Spaces:
Running
on
Zero
Running
on
Zero
Upload app.py with huggingface_hub
Browse files
app.py
CHANGED
|
@@ -11,6 +11,7 @@ import spaces
|
|
| 11 |
import gradio as gr
|
| 12 |
import torch
|
| 13 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
|
|
|
| 14 |
from kernels import get_kernel
|
| 15 |
|
| 16 |
#vllm_flash_attn3 = get_kernel("kernels-community/vllm-flash-attn3")
|
|
@@ -18,7 +19,11 @@ from kernels import get_kernel
|
|
| 18 |
#torch._dynamo.config.disable = True
|
| 19 |
|
| 20 |
MODEL_ID = "le-llm/lapa-v0.1-reasoning-only-32768"
|
|
|
|
| 21 |
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
def load_model():
|
| 24 |
"""Lazy-load model & tokenizer (for zeroGPU)."""
|
|
@@ -28,7 +33,7 @@ def load_model():
|
|
| 28 |
MODEL_ID,
|
| 29 |
dtype=torch.bfloat16, # if device == "cuda" else torch.float32,
|
| 30 |
device_map="auto", # if device == "cuda" else None,
|
| 31 |
-
attn_implementation="flash_attention_2",# "kernels-community/vllm-flash-attn3", # #
|
| 32 |
) # .cuda()
|
| 33 |
print(f"Selected device:", device)
|
| 34 |
return model, tokenizer, device
|
|
@@ -54,12 +59,13 @@ def append_example_message(x: gr.SelectData, history):
|
|
| 54 |
|
| 55 |
@spaces.GPU
|
| 56 |
def bot(
|
| 57 |
-
history: list[dict[str, str]]
|
| 58 |
# max_tokens,
|
| 59 |
# temperature,
|
| 60 |
# top_p,
|
| 61 |
):
|
| 62 |
-
|
|
|
|
| 63 |
# [{"role": "system", "content": system_message}] +
|
| 64 |
# Build conversation
|
| 65 |
max_tokens = 4096
|
|
@@ -103,6 +109,9 @@ def bot(
|
|
| 103 |
history[-1]["content"] += new_text
|
| 104 |
yield history
|
| 105 |
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
# --- drop-in UI compatible with older Gradio versions ---
|
| 108 |
import os, tempfile, time
|
|
@@ -130,6 +139,9 @@ def _clear_chat():
|
|
| 130 |
return "", []
|
| 131 |
|
| 132 |
with gr.Blocks(theme=THEME, css=CSS, fill_height=True) as demo:
|
|
|
|
|
|
|
|
|
|
| 133 |
# Header (no gr.Box to avoid version issues)
|
| 134 |
gr.HTML(
|
| 135 |
"""
|
|
|
|
| 11 |
import gradio as gr
|
| 12 |
import torch
|
| 13 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 14 |
+
from analytics import AnalyticsLogger
|
| 15 |
from kernels import get_kernel
|
| 16 |
|
| 17 |
#vllm_flash_attn3 = get_kernel("kernels-community/vllm-flash-attn3")
|
|
|
|
| 19 |
#torch._dynamo.config.disable = True
|
| 20 |
|
| 21 |
MODEL_ID = "le-llm/lapa-v0.1-reasoning-only-32768"
|
| 22 |
+
logger = AnalyticsLogger()
|
| 23 |
|
| 24 |
+
def _begin_analytics_session():
|
| 25 |
+
# Called once per client on app load
|
| 26 |
+
_ = logger.start_session(MODEL_ID)
|
| 27 |
|
| 28 |
def load_model():
|
| 29 |
"""Lazy-load model & tokenizer (for zeroGPU)."""
|
|
|
|
| 33 |
MODEL_ID,
|
| 34 |
dtype=torch.bfloat16, # if device == "cuda" else torch.float32,
|
| 35 |
device_map="auto", # if device == "cuda" else None,
|
| 36 |
+
attn_implementation="flash_attention_2",# "kernels-community/vllm-flash-attn3", # #
|
| 37 |
) # .cuda()
|
| 38 |
print(f"Selected device:", device)
|
| 39 |
return model, tokenizer, device
|
|
|
|
| 59 |
|
| 60 |
@spaces.GPU
|
| 61 |
def bot(
|
| 62 |
+
history: list[dict[str, str]]
|
| 63 |
# max_tokens,
|
| 64 |
# temperature,
|
| 65 |
# top_p,
|
| 66 |
):
|
| 67 |
+
user_message = history[-1]["content"]
|
| 68 |
+
print('User message:', user_message)
|
| 69 |
# [{"role": "system", "content": system_message}] +
|
| 70 |
# Build conversation
|
| 71 |
max_tokens = 4096
|
|
|
|
| 109 |
history[-1]["content"] += new_text
|
| 110 |
yield history
|
| 111 |
|
| 112 |
+
assistant_message = history[-1]["content"]
|
| 113 |
+
logger.log_interaction(user=user_message, answer=assistant_message)
|
| 114 |
+
|
| 115 |
|
| 116 |
# --- drop-in UI compatible with older Gradio versions ---
|
| 117 |
import os, tempfile, time
|
|
|
|
| 139 |
return "", []
|
| 140 |
|
| 141 |
with gr.Blocks(theme=THEME, css=CSS, fill_height=True) as demo:
|
| 142 |
+
demo.load(fn=_begin_analytics_session, inputs=None, outputs=None)
|
| 143 |
+
|
| 144 |
+
|
| 145 |
# Header (no gr.Box to avoid version issues)
|
| 146 |
gr.HTML(
|
| 147 |
"""
|