Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,55 +9,71 @@ import gradio as gr
|
|
| 9 |
import torch
|
| 10 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 11 |
|
| 12 |
-
|
| 13 |
|
|
|
|
| 14 |
|
| 15 |
|
| 16 |
def load_model():
|
| 17 |
"""Lazy-load model & tokenizer (for zeroGPU)."""
|
| 18 |
-
device = "cuda"# if torch.cuda.is_available() else "cpu"
|
| 19 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 20 |
model = AutoModelForCausalLM.from_pretrained(
|
| 21 |
MODEL_ID,
|
| 22 |
-
|
| 23 |
-
device_map="auto"# if device == "cuda" else None,
|
| 24 |
-
)
|
| 25 |
print(f"Selected device:", device)
|
| 26 |
return model, tokenizer, device
|
| 27 |
|
|
|
|
| 28 |
# Load model/tokenizer each request → allows zeroGPU to cold start & then release
|
| 29 |
model, tokenizer, device = load_model()
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
@spaces.GPU
|
| 32 |
-
def
|
| 33 |
-
message,
|
| 34 |
history: list[dict[str, str]],
|
| 35 |
-
max_tokens,
|
| 36 |
-
temperature,
|
| 37 |
-
top_p,
|
| 38 |
):
|
| 39 |
-
|
| 40 |
# [{"role": "system", "content": system_message}] +
|
| 41 |
# Build conversation
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
|
| 46 |
-
input_text = tokenizer.apply_chat_template(
|
| 47 |
-
|
| 48 |
tokenize=False,
|
| 49 |
add_generation_prompt=True,
|
| 50 |
-
enable_thinking=True,
|
| 51 |
)
|
| 52 |
-
input_text += "<think>" # TODO: remove short term fix
|
| 53 |
-
print(input_text)
|
| 54 |
-
inputs = tokenizer(input_text, return_tensors="pt").to(model.device) # .to(device)
|
| 55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
# Streamer setup
|
| 57 |
streamer = TextIteratorStreamer(
|
| 58 |
-
tokenizer,
|
| 59 |
-
skip_special_tokens=True,
|
| 60 |
-
skip_prompt=True
|
| 61 |
)
|
| 62 |
|
| 63 |
# Run model.generate in background thread
|
|
@@ -66,25 +82,64 @@ def respond(
|
|
| 66 |
max_new_tokens=max_tokens,
|
| 67 |
temperature=temperature,
|
| 68 |
top_p=top_p,
|
|
|
|
| 69 |
do_sample=True,
|
| 70 |
-
eos_token_id=tokenizer.eos_token_id,
|
| 71 |
streamer=streamer,
|
| 72 |
)
|
| 73 |
thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
|
| 74 |
thread.start()
|
| 75 |
|
|
|
|
| 76 |
# Yield tokens as they come in
|
| 77 |
-
partial_output = ""
|
| 78 |
for new_text in streamer:
|
| 79 |
-
|
| 80 |
-
yield
|
|
|
|
| 81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
-
chatbot =
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 89 |
gr.Slider(
|
| 90 |
minimum=0.1,
|
|
@@ -92,19 +147,4 @@ chatbot = gr.ChatInterface(
|
|
| 92 |
value=0.95,
|
| 93 |
step=0.05,
|
| 94 |
label="Top-p (nucleus sampling)",
|
| 95 |
-
),
|
| 96 |
-
],
|
| 97 |
-
examples=[
|
| 98 |
-
["хто тримає цей район?"],
|
| 99 |
-
["Напиши історію про Івасика-Телесика"],
|
| 100 |
-
["Яка найвища гора в Україні?"],
|
| 101 |
-
["Як звали батька Тараса Григоровича Шевченка?"],
|
| 102 |
-
#["Як можна заробити нелегально швидко гроші?"],
|
| 103 |
-
["Яка з цих гір не знаходиться у Європі? Говерла, Монблан, Гран-Парадізо, Еверест"],
|
| 104 |
-
[
|
| 105 |
-
"Дай відповідь на питання\nЧому у качки жовті ноги?"
|
| 106 |
-
]],
|
| 107 |
-
)
|
| 108 |
-
|
| 109 |
-
if __name__ == "__main__":
|
| 110 |
-
chatbot.launch()
|
|
|
|
| 9 |
import torch
|
| 10 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 11 |
|
| 12 |
+
torch._dynamo.config.disable = True
|
| 13 |
|
| 14 |
+
MODEL_ID = "le-llm/lapa-v0.1-reasoning-only"
|
| 15 |
|
| 16 |
|
| 17 |
def load_model():
|
| 18 |
"""Lazy-load model & tokenizer (for zeroGPU)."""
|
| 19 |
+
device = "cuda" # if torch.cuda.is_available() else "cpu"
|
| 20 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 21 |
model = AutoModelForCausalLM.from_pretrained(
|
| 22 |
MODEL_ID,
|
| 23 |
+
torch_dtype=torch.bfloat16, # if device == "cuda" else torch.float32,
|
| 24 |
+
device_map="auto", # if device == "cuda" else None,
|
| 25 |
+
) # .cuda()
|
| 26 |
print(f"Selected device:", device)
|
| 27 |
return model, tokenizer, device
|
| 28 |
|
| 29 |
+
|
| 30 |
# Load model/tokenizer each request → allows zeroGPU to cold start & then release
|
| 31 |
model, tokenizer, device = load_model()
|
| 32 |
|
| 33 |
+
|
| 34 |
+
def user(user_message, history: list):
|
| 35 |
+
return "", history + [{"role": "user", "content": user_message}]
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def append_example_message(x: gr.SelectData, history):
|
| 39 |
+
print(x)
|
| 40 |
+
print(x.value)
|
| 41 |
+
print(x.value["text"])
|
| 42 |
+
if x.value["text"] is not None:
|
| 43 |
+
history.append({"role": "user", "content": x.value["text"]})
|
| 44 |
+
|
| 45 |
+
return history
|
| 46 |
+
|
| 47 |
+
|
| 48 |
@spaces.GPU
|
| 49 |
+
def bot(
|
|
|
|
| 50 |
history: list[dict[str, str]],
|
| 51 |
+
# max_tokens,
|
| 52 |
+
# temperature,
|
| 53 |
+
# top_p,
|
| 54 |
):
|
| 55 |
+
|
| 56 |
# [{"role": "system", "content": system_message}] +
|
| 57 |
# Build conversation
|
| 58 |
+
max_tokens = 4096
|
| 59 |
+
temperature = 0.7
|
| 60 |
+
top_p = 0.95
|
| 61 |
|
| 62 |
+
input_text: str = tokenizer.apply_chat_template(
|
| 63 |
+
history,
|
| 64 |
tokenize=False,
|
| 65 |
add_generation_prompt=True,
|
| 66 |
+
# enable_thinking=True,
|
| 67 |
)
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
+
input_text = input_text.replace(tokenizer.bos_token, "", 1)
|
| 70 |
+
print(input_text)
|
| 71 |
+
inputs = tokenizer(input_text, return_tensors="pt").to(model.device) # .to(device)
|
| 72 |
+
print("Decoded input:", tokenizer.decode(inputs["input_ids"][0]))
|
| 73 |
+
print([{id: tokenizer.decode([id])} for id in inputs["input_ids"][0]])
|
| 74 |
# Streamer setup
|
| 75 |
streamer = TextIteratorStreamer(
|
| 76 |
+
tokenizer, skip_prompt=True # skip_special_tokens=True # ,
|
|
|
|
|
|
|
| 77 |
)
|
| 78 |
|
| 79 |
# Run model.generate in background thread
|
|
|
|
| 82 |
max_new_tokens=max_tokens,
|
| 83 |
temperature=temperature,
|
| 84 |
top_p=top_p,
|
| 85 |
+
top_k=64,
|
| 86 |
do_sample=True,
|
| 87 |
+
# eos_token_id=tokenizer.eos_token_id,
|
| 88 |
streamer=streamer,
|
| 89 |
)
|
| 90 |
thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
|
| 91 |
thread.start()
|
| 92 |
|
| 93 |
+
history.append({"role": "assistant", "content": ""})
|
| 94 |
# Yield tokens as they come in
|
|
|
|
| 95 |
for new_text in streamer:
|
| 96 |
+
history[-1]["content"] += new_text
|
| 97 |
+
yield history
|
| 98 |
+
|
| 99 |
|
| 100 |
+
import gradio as gr
|
| 101 |
+
import random
|
| 102 |
+
import time
|
| 103 |
+
|
| 104 |
+
with gr.Blocks() as demo:
|
| 105 |
+
chatbot = gr.Chatbot(
|
| 106 |
+
type="messages",
|
| 107 |
+
allow_tags=["think"],
|
| 108 |
+
examples=[
|
| 109 |
+
{"text": i}
|
| 110 |
+
for i in [
|
| 111 |
+
"хто тримає цей район?",
|
| 112 |
+
"Напиши історію про Івасика-Телесика",
|
| 113 |
+
"Яка найвища гора в Україні?",
|
| 114 |
+
"Як звали батька Тараса Григоровича Шевченка?",
|
| 115 |
+
# "Як можна заробити нелегально швидко гроші?"],
|
| 116 |
+
"Яка з цих гір не знаходиться у Європі? Говерла, Монблан, Гран-Парадізо, Еверест",
|
| 117 |
+
"Дай відповідь на питання\nЧому у качки жовті ноги?",
|
| 118 |
+
]
|
| 119 |
+
],
|
| 120 |
+
)
|
| 121 |
+
msg = gr.Textbox(label="Message", autofocus=True)
|
| 122 |
+
send_btn = gr.Button("Send")
|
| 123 |
+
# clear = gr.Button("Clear")
|
| 124 |
|
| 125 |
+
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=True).then(
|
| 126 |
+
bot, chatbot, chatbot
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
chatbot.example_select(
|
| 130 |
+
append_example_message, [chatbot], [chatbot], queue=True
|
| 131 |
+
).then(bot, chatbot, chatbot)
|
| 132 |
+
|
| 133 |
+
send_btn.click(user, [msg, chatbot], [msg, chatbot], queue=True).then(
|
| 134 |
+
bot, chatbot, chatbot
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
# clear.click(lambda: None, None, chatbot, queue=True)
|
| 138 |
+
|
| 139 |
+
if __name__ == "__main__":
|
| 140 |
+
demo.launch()
|
| 141 |
+
|
| 142 |
+
"""gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens"),
|
| 143 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 144 |
gr.Slider(
|
| 145 |
minimum=0.1,
|
|
|
|
| 147 |
value=0.95,
|
| 148 |
step=0.05,
|
| 149 |
label="Top-p (nucleus sampling)",
|
| 150 |
+
),"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|