iamthewalrus67 commited on
Commit
919bf29
·
1 Parent(s): f38f71f

Rewrite with transformers

Browse files
Files changed (1) hide show
  1. app.py +24 -30
app.py CHANGED
@@ -1,7 +1,15 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
- SYSTEM_PROMPT = """"""
 
 
 
 
 
 
 
5
 
6
  def respond(
7
  message,
@@ -10,45 +18,32 @@ def respond(
10
  max_tokens,
11
  temperature,
12
  top_p,
13
- hf_token: gr.OAuthToken,
14
  ):
15
- """
16
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
17
- """
18
- client = InferenceClient(token=hf_token.token, model="le-llm/gemma-3-12b-it-reasoning")
19
-
20
- messages = [{"role": "system", "content": system_message}]
21
 
22
- messages.extend(history)
 
 
 
 
23
 
24
- messages.append({"role": "user", "content": message})
25
 
26
- response = ""
27
-
28
- for message in client.chat_completion(
29
- messages,
30
- max_tokens=max_tokens,
31
- stream=True,
32
  temperature=temperature,
33
  top_p=top_p,
34
- ):
35
- choices = message.choices
36
- token = ""
37
- if len(choices) and choices[0].delta.content:
38
- token = choices[0].delta.content
39
-
40
- response += token
41
- yield response
42
 
 
 
43
 
44
- """
45
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
46
- """
47
  chatbot = gr.ChatInterface(
48
  respond,
49
  type="messages",
50
  additional_inputs=[
51
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
52
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
53
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
54
  gr.Slider(
@@ -64,6 +59,5 @@ chatbot = gr.ChatInterface(
64
  with gr.Blocks() as demo:
65
  chatbot.render()
66
 
67
-
68
  if __name__ == "__main__":
69
  demo.launch()
 
1
  import gradio as gr
2
+ import torch
3
+ from transformers import AutoModelForCausalLM, AutoTokenizer
4
 
5
+ MODEL_ID = "le-llm/gemma-3-12b-it-reasoning"
6
+
7
+ # Load model & tokenizer
8
+ device = "cuda" if torch.cuda.is_available() else "cpu"
9
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
10
+ model = AutoModelForCausalLM.from_pretrained(MODEL_ID, torch_dtype=torch.float16 if device=="cuda" else torch.float32).to(device)
11
+
12
+ SYSTEM_PROMPT = "You are a friendly Chatbot."
13
 
14
  def respond(
15
  message,
 
18
  max_tokens,
19
  temperature,
20
  top_p,
 
21
  ):
 
 
 
 
 
 
22
 
23
+ conversation = system_message + "\n"
24
+ for turn in history:
25
+ role = "User" if turn["role"] == "user" else "Assistant"
26
+ conversation += f"{role}: {turn['content']}\n"
27
+ conversation += f"User: {message}\nAssistant:"
28
 
29
+ inputs = tokenizer(conversation, return_tensors="pt").to(device)
30
 
31
+ output_ids = model.generate(
32
+ **inputs,
33
+ max_new_tokens=max_tokens,
 
 
 
34
  temperature=temperature,
35
  top_p=top_p,
36
+ do_sample=True,
37
+ )
 
 
 
 
 
 
38
 
39
+ response = tokenizer.decode(output_ids[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True)
40
+ yield response
41
 
 
 
 
42
  chatbot = gr.ChatInterface(
43
  respond,
44
  type="messages",
45
  additional_inputs=[
46
+ gr.Textbox(value=SYSTEM_PROMPT, label="System message"),
47
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
48
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
49
  gr.Slider(
 
59
  with gr.Blocks() as demo:
60
  chatbot.render()
61
 
 
62
  if __name__ == "__main__":
63
  demo.launch()