Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -10,6 +10,8 @@ from unsloth import FastLanguageModel
|
|
| 10 |
import torch
|
| 11 |
import re
|
| 12 |
|
|
|
|
|
|
|
| 13 |
# Define helper functions
|
| 14 |
async def fetch_data(url):
|
| 15 |
headers = {
|
|
@@ -100,29 +102,36 @@ def translate_text(text):
|
|
| 100 |
print(f"An error occurred during translation: {e}")
|
| 101 |
return None
|
| 102 |
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
max_seq_length = 2048
|
| 105 |
dtype = None
|
| 106 |
load_in_4bit = True
|
| 107 |
|
| 108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
-
model, tokenizer = FastLanguageModel.from_pretrained(
|
| 111 |
-
model_name="unsloth/mistral-7b-instruct-v0.3-bnb-4bit",
|
| 112 |
-
max_seq_length=max_seq_length,
|
| 113 |
-
dtype=dtype,
|
| 114 |
-
load_in_4bit=load_in_4bit,
|
| 115 |
-
)
|
| 116 |
-
|
| 117 |
-
# Enable native 2x faster inference if GPU is available
|
| 118 |
-
if device == "cuda":
|
| 119 |
-
FastLanguageModel.for_inference(model)
|
| 120 |
|
| 121 |
-
return model, tokenizer, device
|
| 122 |
-
|
| 123 |
-
model, tokenizer, device = load_model()
|
| 124 |
-
|
| 125 |
-
def summarize_url(url):
|
| 126 |
result = asyncio.run(fetch_data(url))
|
| 127 |
text = concatenate_text(result)
|
| 128 |
translated_text = translate_text(text)
|
|
@@ -139,7 +148,7 @@ def summarize_url(url):
|
|
| 139 |
"""
|
| 140 |
|
| 141 |
prompt = alpaca_prompt.format(translated_text)
|
| 142 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(
|
| 143 |
|
| 144 |
outputs = model.generate(inputs.input_ids, max_new_tokens=64, use_cache=True)
|
| 145 |
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
@@ -156,4 +165,4 @@ iface = gr.Interface(
|
|
| 156 |
)
|
| 157 |
|
| 158 |
# Launch the Gradio app
|
| 159 |
-
iface.launch()
|
|
|
|
| 10 |
import torch
|
| 11 |
import re
|
| 12 |
|
| 13 |
+
|
| 14 |
+
|
| 15 |
# Define helper functions
|
| 16 |
async def fetch_data(url):
|
| 17 |
headers = {
|
|
|
|
| 102 |
print(f"An error occurred during translation: {e}")
|
| 103 |
return None
|
| 104 |
|
| 105 |
+
|
| 106 |
+
model_name="unsloth/mistral-7b-instruct-v0.3-bnb-4bit",
|
| 107 |
+
|
| 108 |
+
# Initialize model and tokenizer variables
|
| 109 |
+
model = None
|
| 110 |
+
tokenizer = None
|
| 111 |
+
|
| 112 |
+
@spaces.GPU()
|
| 113 |
+
def summarize_url(url):
|
| 114 |
+
|
| 115 |
+
global model, tokenizer # Declare model and tokenizer as global variables
|
| 116 |
+
|
| 117 |
+
# Load the model
|
| 118 |
max_seq_length = 2048
|
| 119 |
dtype = None
|
| 120 |
load_in_4bit = True
|
| 121 |
|
| 122 |
+
if model is None or tokenizer is None:
|
| 123 |
+
from unsloth import FastLanguageModel
|
| 124 |
+
|
| 125 |
+
# Load the model and tokenizer
|
| 126 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
| 127 |
+
model_name=model_name, # YOUR MODEL YOU USED FOR TRAINING
|
| 128 |
+
max_seq_length=max_seq_length,
|
| 129 |
+
dtype=dtype,
|
| 130 |
+
load_in_4bit=load_in_4bit,
|
| 131 |
+
)
|
| 132 |
+
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
| 133 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
result = asyncio.run(fetch_data(url))
|
| 136 |
text = concatenate_text(result)
|
| 137 |
translated_text = translate_text(text)
|
|
|
|
| 148 |
"""
|
| 149 |
|
| 150 |
prompt = alpaca_prompt.format(translated_text)
|
| 151 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
| 152 |
|
| 153 |
outputs = model.generate(inputs.input_ids, max_new_tokens=64, use_cache=True)
|
| 154 |
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
| 165 |
)
|
| 166 |
|
| 167 |
# Launch the Gradio app
|
| 168 |
+
iface.launch()
|