File size: 11,713 Bytes
803c132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
# InstantSplat API Guide

This guide shows you how to use the InstantSplat API to submit images and get back the Supabase GLB URL.

## Quick Start

### 1. Using Python (Recommended)

Install the Gradio client:

```bash
pip install gradio_client
```

#### Simple Example - Get GLB URL

```python
from gradio_client import Client

# Connect to your Space
client = Client("your-username/InstantSplat")  # or full URL

# Submit images
result = client.predict(
    [
        "path/to/image1.jpg",
        "path/to/image2.jpg",
        "path/to/image3.jpg"
    ],
    api_name="/predict"  # Uses the main process function
)

# Extract URLs
video_path, ply_url, download_path, model_ply, model_glb, glb_url = result

print(f"GLB URL: {glb_url}")
print(f"PLY URL: {ply_url}")
```

#### Complete Example with Error Handling

```python
from gradio_client import Client
import os

def process_images_to_glb(image_paths, space_url="your-username/InstantSplat"):
    """
    Process images through InstantSplat and get GLB URL.
    
    Args:
        image_paths: List of local image file paths (3+ images recommended)
        space_url: HuggingFace Space URL or identifier
        
    Returns:
        dict with URLs and status
    """
    try:
        # Validate inputs
        if len(image_paths) < 2:
            return {"error": "Need at least 2 images"}
        
        for path in image_paths:
            if not os.path.exists(path):
                return {"error": f"Image not found: {path}"}
        
        # Connect and process
        client = Client(space_url)
        print(f"Submitting {len(image_paths)} images for processing...")
        
        result = client.predict(
            image_paths,
            api_name="/predict"
        )
        
        # Unpack results
        video_path, ply_url, _, _, glb_path, glb_url = result
        
        # Check success
        if glb_url and not glb_url.startswith("Error"):
            return {
                "status": "success",
                "glb_url": glb_url,
                "ply_url": ply_url,
                "video_available": video_path is not None
            }
        else:
            return {
                "status": "error",
                "error": glb_url or "Upload failed"
            }
            
    except Exception as e:
        return {
            "status": "error",
            "error": str(e)
        }


# Usage
if __name__ == "__main__":
    images = [
        "image1.jpg",
        "image2.jpg",
        "image3.jpg"
    ]
    
    result = process_images_to_glb(images)
    
    if result["status"] == "success":
        print(f"✅ Success!")
        print(f"GLB URL: {result['glb_url']}")
        print(f"PLY URL: {result['ply_url']}")
    else:
        print(f"❌ Error: {result['error']}")
```

### 2. Using JavaScript/TypeScript

Install the Gradio client:

```bash
npm install --save @gradio/client
```

#### Example Code

```typescript
import { Client } from "@gradio/client";

async function processImages(imagePaths: string[]): Promise<string> {
  const client = await Client.connect("your-username/InstantSplat");
  
  const result = await client.predict("/predict", {
    inputfiles: imagePaths
  });
  
  // result.data is an array: [video, ply_url, download, model_ply, model_glb, glb_url]
  const glbUrl = result.data[5];
  
  return glbUrl;
}

// Usage
const images = [
  "./image1.jpg",
  "./image2.jpg", 
  "./image3.jpg"
];

processImages(images)
  .then(glbUrl => console.log("GLB URL:", glbUrl))
  .catch(err => console.error("Error:", err));
```

### 3. Using cURL (Direct HTTP)

First, get your Space's API endpoint:

```bash
# Get API info
curl https://your-username-instantsplat.hf.space/info
```

Then upload files and call the API:

```bash
# Upload files and call prediction
curl -X POST https://your-username-instantsplat.hf.space/api/predict \
  -H "Content-Type: application/json" \
  -d '{
    "data": [
      [
        {"path": "https://url-to-image1.jpg"},
        {"path": "https://url-to-image2.jpg"},
        {"path": "https://url-to-image3.jpg"}
      ]
    ]
  }'
```

**Note**: For cURL, you'll need to either:
1. Provide URLs to publicly accessible images
2. Or use Gradio's file upload API first to upload local files

## API Response Format

The API returns a tuple with 6 elements:

```python
[
    video_path,      # (0) Path to generated video file
    ply_url,         # (1) Supabase URL to PLY file
    ply_download,    # (2) Local PLY file for download
    ply_model,       # (3) PLY file for 3D viewer
    glb_model,       # (4) Local GLB file for 3D viewer
    glb_url          # (5) Supabase URL to GLB file ← THIS IS WHAT YOU WANT
]
```

**Access the GLB URL:**
- Python: `result[5]` or unpack as shown above
- JavaScript: `result.data[5]`

## Requirements

### Input Requirements

- **Minimum images**: 2 (though 3+ recommended for better results)
- **Image resolution**: All images should have the same resolution
- **Supported formats**: JPG, PNG
- **Recommended**: 3-10 images of the same scene from different viewpoints

### Processing Time

- **3 images**: ~30-60 seconds (with GPU)
- **5+ images**: ~60-120 seconds
- Depends on image resolution and GPU availability

### Output Files

- **GLB file**: Typically 5-20 MB
- **PLY file**: Typically 50-200 MB
- Both files are uploaded to your Supabase Storage bucket

## Error Handling

Common errors and solutions:

### "Supabase credentials not set"
```python
# Solution: Set environment variables on your Space
SUPABASE_URL=https://xxx.supabase.co
SUPABASE_KEY=your-key
SUPABASE_BUCKET=outputs
```

### "Payload too large"
```python
# Solution: Increase Supabase bucket file size limit
# Dashboard > Storage > Settings > File size limit
```

### "The number of input images should be greater than 1"
```python
# Solution: Provide at least 2 images
images = ["img1.jpg", "img2.jpg", "img3.jpg"]
```

### "The resolution of the input image should be the same"
```python
# Solution: Resize images to same resolution before uploading
from PIL import Image

def resize_images(image_paths, size=(512, 512)):
    for path in image_paths:
        img = Image.open(path)
        img = img.resize(size)
        img.save(path)
```

## Advanced Usage

### Batch Processing Multiple Sets

```python
from gradio_client import Client
import time

def batch_process(image_sets, space_url="your-username/InstantSplat"):
    """
    Process multiple sets of images.
    
    Args:
        image_sets: List of image path lists
            e.g., [["set1_img1.jpg", "set1_img2.jpg"], ["set2_img1.jpg", ...]]
    """
    client = Client(space_url)
    results = []
    
    for i, images in enumerate(image_sets):
        print(f"Processing set {i+1}/{len(image_sets)}...")
        
        try:
            result = client.predict(images, api_name="/predict")
            glb_url = result[5]
            
            results.append({
                "set_index": i,
                "status": "success",
                "glb_url": glb_url,
                "image_count": len(images)
            })
            
        except Exception as e:
            results.append({
                "set_index": i,
                "status": "error",
                "error": str(e)
            })
        
        # Rate limiting - be nice to the server
        time.sleep(2)
    
    return results


# Usage
image_sets = [
    ["scene1_img1.jpg", "scene1_img2.jpg", "scene1_img3.jpg"],
    ["scene2_img1.jpg", "scene2_img2.jpg", "scene2_img3.jpg"],
]

results = batch_process(image_sets)

for r in results:
    if r["status"] == "success":
        print(f"Set {r['set_index']}: {r['glb_url']}")
    else:
        print(f"Set {r['set_index']} failed: {r['error']}")
```

### Async Processing (JavaScript)

```typescript
import { Client } from "@gradio/client";

async function processMultipleSets(imageSets: string[][]) {
  const client = await Client.connect("your-username/InstantSplat");
  
  // Process all sets in parallel
  const promises = imageSets.map(images => 
    client.predict("/predict", { inputfiles: images })
      .then(result => ({
        status: "success",
        glb_url: result.data[5]
      }))
      .catch(error => ({
        status: "error",
        error: error.message
      }))
  );
  
  return await Promise.all(promises);
}

// Usage
const imageSets = [
  ["set1_img1.jpg", "set1_img2.jpg"],
  ["set2_img1.jpg", "set2_img2.jpg"],
];

processMultipleSets(imageSets)
  .then(results => {
    results.forEach((r, i) => {
      if (r.status === "success") {
        console.log(`Set ${i}: ${r.glb_url}`);
      } else {
        console.error(`Set ${i} failed: ${r.error}`);
      }
    });
  });
```

## API Endpoint Reference

### GET /info
Returns API information and available endpoints.

### GET /docs
Swagger/OpenAPI documentation (when `show_api=True`).

### POST /api/predict
Main prediction endpoint.

**Request:**
```json
{
  "data": [
    [
      {"path": "file1.jpg"},
      {"path": "file2.jpg"},
      {"path": "file3.jpg"}
    ]
  ]
}
```

**Response:**
```json
{
  "data": [
    "video_path.mp4",
    "https://supabase.co/.../file.ply",
    "download_path.ply",
    "model_path.ply",
    "model_path.glb",
    "https://supabase.co/.../file.glb"
  ],
  "duration": 45.2
}
```

## Monitoring and Logs

View real-time logs in your HuggingFace Space:
1. Go to your Space page
2. Click "Logs" tab
3. Watch processing in real-time

## Rate Limits

- HuggingFace Spaces may have rate limits based on your tier
- Free tier: May queue requests during high load
- Pro tier: Better availability and no queuing

## Support

For issues or questions:
- Check the logs in your Space
- Review error messages in API responses
- Ensure all environment variables are set
- Verify Supabase bucket configuration

## Example: Complete Workflow

```python
#!/usr/bin/env python3
"""
Complete workflow: Upload images → Process → Get GLB → Download
"""

from gradio_client import Client
import requests
import os

def complete_workflow(image_paths, output_dir="./outputs"):
    """Process images and download the resulting GLB file."""
    
    # 1. Process images
    print("🚀 Processing images...")
    client = Client("your-username/InstantSplat")
    result = client.predict(image_paths, api_name="/predict")
    
    # 2. Extract URLs
    glb_url = result[5]
    ply_url = result[1]
    
    if not glb_url or glb_url.startswith("Error"):
        print(f"❌ Processing failed: {glb_url}")
        return None
    
    print(f"✅ Processing complete!")
    print(f"   GLB URL: {glb_url}")
    print(f"   PLY URL: {ply_url}")
    
    # 3. Download GLB file
    os.makedirs(output_dir, exist_ok=True)
    glb_filename = os.path.join(output_dir, "model.glb")
    
    print(f"📥 Downloading GLB to {glb_filename}...")
    response = requests.get(glb_url)
    
    if response.status_code == 200:
        with open(glb_filename, 'wb') as f:
            f.write(response.content)
        print(f"✅ Downloaded: {glb_filename}")
        return {
            "glb_url": glb_url,
            "ply_url": ply_url,
            "local_glb": glb_filename
        }
    else:
        print(f"❌ Download failed: {response.status_code}")
        return None


if __name__ == "__main__":
    images = ["img1.jpg", "img2.jpg", "img3.jpg"]
    result = complete_workflow(images)
    
    if result:
        print(f"\n🎉 Success! Model saved to: {result['local_glb']}")
```

## Next Steps

1. Test with the Python example above
2. Integrate into your application
3. Set up error handling and retries
4. Monitor your Supabase storage usage
5. Consider batch processing for multiple scenes

Happy splating! 🎨✨