File size: 19,798 Bytes
a12ef5d
 
 
 
 
 
84cf73f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a12ef5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26e8a2f
 
a12ef5d
 
 
 
 
 
 
 
 
 
26e8a2f
 
a12ef5d
 
 
 
 
 
 
 
 
 
26e8a2f
 
a12ef5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26e8a2f
a12ef5d
26e8a2f
a12ef5d
 
 
 
 
 
 
 
 
26e8a2f
a12ef5d
26e8a2f
a12ef5d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import pandas as pd
import numpy as np
from datetime import datetime
from data import extract_model_data
import gradio as gr

def get_time_series_summary_dfs(historical_df: pd.DataFrame) -> dict:
    """Return dataframes for historical summary plots (failure rates, AMD tests, NVIDIA tests)."""

    # Group by date to get daily statistics
    daily_stats = []
    dates = sorted(historical_df['date'].unique())
    for date in dates:
        date_data = historical_df[historical_df['date'] == date]
        amd_passed = date_data['success_amd'].sum() if 'success_amd' in date_data.columns else 0
        amd_failed = (date_data['failed_multi_no_amd'].sum() + date_data['failed_single_no_amd'].sum()) if 'failed_multi_no_amd' in date_data.columns else 0
        amd_skipped = date_data['skipped_amd'].sum() if 'skipped_amd' in date_data.columns else 0
        amd_total = amd_passed + amd_failed + amd_skipped
        amd_failure_rate = (amd_failed / amd_total * 100) if amd_total > 0 else 0

        nvidia_passed = date_data['success_nvidia'].sum() if 'success_nvidia' in date_data.columns else 0
        nvidia_failed = (date_data['failed_multi_no_nvidia'].sum() + date_data['failed_single_no_nvidia'].sum()) if 'failed_multi_no_nvidia' in date_data.columns else 0
        nvidia_skipped = date_data['skipped_nvidia'].sum() if 'skipped_nvidia' in date_data.columns else 0
        nvidia_total = nvidia_passed + nvidia_failed + nvidia_skipped
        nvidia_failure_rate = (nvidia_failed / nvidia_total * 100) if nvidia_total > 0 else 0

        daily_stats.append({
            'date': date,
            'amd_failure_rate': amd_failure_rate,
            'nvidia_failure_rate': nvidia_failure_rate,
            'amd_passed': amd_passed,
            'amd_failed': amd_failed,
            'amd_skipped': amd_skipped,
            'nvidia_passed': nvidia_passed,
            'nvidia_failed': nvidia_failed,
            'nvidia_skipped': nvidia_skipped
        })

    # Failure rate dataframe
    failure_rate_data = []
    for i, stat in enumerate(daily_stats):
        amd_change = stat['amd_failure_rate'] - daily_stats[i-1]['amd_failure_rate'] if i > 0 else 0
        nvidia_change = stat['nvidia_failure_rate'] - daily_stats[i-1]['nvidia_failure_rate'] if i > 0 else 0
        failure_rate_data.extend([
            {'date': stat['date'], 'failure_rate': stat['amd_failure_rate'], 'platform': 'AMD', 'change': amd_change},
            {'date': stat['date'], 'failure_rate': stat['nvidia_failure_rate'], 'platform': 'NVIDIA', 'change': nvidia_change}
        ])
    failure_rate_df = pd.DataFrame(failure_rate_data)

    # AMD tests dataframe
    amd_data = []
    for i, stat in enumerate(daily_stats):
        passed_change = stat['amd_passed'] - daily_stats[i-1]['amd_passed'] if i > 0 else 0
        failed_change = stat['amd_failed'] - daily_stats[i-1]['amd_failed'] if i > 0 else 0
        skipped_change = stat['amd_skipped'] - daily_stats[i-1]['amd_skipped'] if i > 0 else 0
        amd_data.extend([
            {'date': stat['date'], 'count': stat['amd_passed'], 'test_type': 'Passed', 'change': passed_change},
            {'date': stat['date'], 'count': stat['amd_failed'], 'test_type': 'Failed', 'change': failed_change},
            {'date': stat['date'], 'count': stat['amd_skipped'], 'test_type': 'Skipped', 'change': skipped_change}
        ])
    amd_df = pd.DataFrame(amd_data)

    # NVIDIA tests dataframe
    nvidia_data = []
    for i, stat in enumerate(daily_stats):
        passed_change = stat['nvidia_passed'] - daily_stats[i-1]['nvidia_passed'] if i > 0 else 0
        failed_change = stat['nvidia_failed'] - daily_stats[i-1]['nvidia_failed'] if i > 0 else 0
        skipped_change = stat['nvidia_skipped'] - daily_stats[i-1]['nvidia_skipped'] if i > 0 else 0
        nvidia_data.extend([
            {'date': stat['date'], 'count': stat['nvidia_passed'], 'test_type': 'Passed', 'change': passed_change},
            {'date': stat['date'], 'count': stat['nvidia_failed'], 'test_type': 'Failed', 'change': failed_change},
            {'date': stat['date'], 'count': stat['nvidia_skipped'], 'test_type': 'Skipped', 'change': skipped_change}
        ])
    nvidia_df = pd.DataFrame(nvidia_data)

    return {
        'failure_rates_df': failure_rate_df,
        'amd_tests_df': amd_df,
        'nvidia_tests_df': nvidia_df,
    }

def get_model_time_series_dfs(historical_df: pd.DataFrame, model_name: str) -> dict:
    """Return dataframes for a specific model's historical plots (AMD, NVIDIA)."""
    model_data = historical_df[historical_df.index.str.lower() == model_name.lower()]
    
    if model_data.empty:
        empty_df = pd.DataFrame({'date': [], 'count': [], 'test_type': [], 'change': []})
        return {'amd_df': empty_df.copy(), 'nvidia_df': empty_df.copy()}

    dates = sorted(model_data['date'].unique())
    amd_data = []
    nvidia_data = []
    for i, date in enumerate(dates):
        date_data = model_data[model_data['date'] == date]
        row = date_data.iloc[0]

        amd_passed = row.get('success_amd', 0)
        amd_failed = row.get('failed_multi_no_amd', 0) + row.get('failed_single_no_amd', 0)
        amd_skipped = row.get('skipped_amd', 0)
        prev_row = model_data[model_data['date'] == dates[i-1]].iloc[0] if i > 0 and not model_data[model_data['date'] == dates[i-1]].empty else None
        amd_passed_change = amd_passed - (prev_row.get('success_amd', 0) if prev_row is not None else 0)
        amd_failed_change = amd_failed - (prev_row.get('failed_multi_no_amd', 0) + prev_row.get('failed_single_no_amd', 0) if prev_row is not None else 0)
        amd_skipped_change = amd_skipped - (prev_row.get('skipped_amd', 0) if prev_row is not None else 0)
        amd_data.extend([
            {'date': date, 'count': amd_passed, 'test_type': 'Passed', 'change': amd_passed_change},
            {'date': date, 'count': amd_failed, 'test_type': 'Failed', 'change': amd_failed_change},
            {'date': date, 'count': amd_skipped, 'test_type': 'Skipped', 'change': amd_skipped_change}
        ])

        nvidia_passed = row.get('success_nvidia', 0)
        nvidia_failed = row.get('failed_multi_no_nvidia', 0) + row.get('failed_single_no_nvidia', 0)
        nvidia_skipped = row.get('skipped_nvidia', 0)
        if prev_row is not None:
            prev_nvidia_passed = prev_row.get('success_nvidia', 0)
            prev_nvidia_failed = prev_row.get('failed_multi_no_nvidia', 0) + prev_row.get('failed_single_no_nvidia', 0)
            prev_nvidia_skipped = prev_row.get('skipped_nvidia', 0)
        else:
            prev_nvidia_passed = prev_nvidia_failed = prev_nvidia_skipped = 0
        nvidia_data.extend([
            {'date': date, 'count': nvidia_passed, 'test_type': 'Passed', 'change': nvidia_passed - prev_nvidia_passed},
            {'date': date, 'count': nvidia_failed, 'test_type': 'Failed', 'change': nvidia_failed - prev_nvidia_failed},
            {'date': date, 'count': nvidia_skipped, 'test_type': 'Skipped', 'change': nvidia_skipped - prev_nvidia_skipped}
        ])

    return {'amd_df': pd.DataFrame(amd_data), 'nvidia_df': pd.DataFrame(nvidia_data)}

def create_time_series_summary_gradio(historical_df: pd.DataFrame) -> dict:
    """Create time-series visualization for overall failure rates over time using Gradio native plots."""
    if historical_df.empty or 'date' not in historical_df.columns:
        # Return empty plots
        empty_df = pd.DataFrame({'date': [], 'failure_rate': [], 'platform': []})
        return {
            'failure_rates': gr.LinePlot(empty_df, x="date", y="failure_rate", color="platform", title="No historical data available", tooltip=["failure_rate", "date", "change"]),
            'amd_tests': gr.LinePlot(empty_df, x="date", y="failure_rate", color="platform", title="No historical data available", tooltip=["count", "date", "change"]),
            'nvidia_tests': gr.LinePlot(empty_df, x="date", y="failure_rate", color="platform", title="No historical data available", tooltip=["count", "date", "change"])
        }
    
    # Group by date to get daily statistics
    daily_stats = []
    dates = sorted(historical_df['date'].unique())
    
    for date in dates:
        date_data = historical_df[historical_df['date'] == date]
        
        # Calculate AMD stats - use the correct column names from the data structure
        amd_passed = date_data['success_amd'].sum() if 'success_amd' in date_data.columns else 0
        amd_failed = (date_data['failed_multi_no_amd'].sum() + date_data['failed_single_no_amd'].sum()) if 'failed_multi_no_amd' in date_data.columns else 0
        amd_skipped = date_data['skipped_amd'].sum() if 'skipped_amd' in date_data.columns else 0
        amd_total = amd_passed + amd_failed + amd_skipped
        amd_failure_rate = (amd_failed / amd_total * 100) if amd_total > 0 else 0
        
        # Calculate NVIDIA stats - use the correct column names from the data structure
        nvidia_passed = date_data['success_nvidia'].sum() if 'success_nvidia' in date_data.columns else 0
        nvidia_failed = (date_data['failed_multi_no_nvidia'].sum() + date_data['failed_single_no_nvidia'].sum()) if 'failed_multi_no_nvidia' in date_data.columns else 0
        nvidia_skipped = date_data['skipped_nvidia'].sum() if 'skipped_nvidia' in date_data.columns else 0
        nvidia_total = nvidia_passed + nvidia_failed + nvidia_skipped
        nvidia_failure_rate = (nvidia_failed / nvidia_total * 100) if nvidia_total > 0 else 0
        
        daily_stats.append({
            'date': date,
            'amd_failure_rate': amd_failure_rate,
            'nvidia_failure_rate': nvidia_failure_rate,
            'amd_passed': amd_passed,
            'amd_failed': amd_failed,
            'amd_skipped': amd_skipped,
            'nvidia_passed': nvidia_passed,
            'nvidia_failed': nvidia_failed,
            'nvidia_skipped': nvidia_skipped
        })
    
    # Create failure rate data
    failure_rate_data = []
    for i, stat in enumerate(daily_stats):
        # Calculate change from previous point
        amd_change = 0
        nvidia_change = 0
        if i > 0:
            amd_change = stat['amd_failure_rate'] - daily_stats[i-1]['amd_failure_rate']
            nvidia_change = stat['nvidia_failure_rate'] - daily_stats[i-1]['nvidia_failure_rate']
        
        failure_rate_data.extend([
            {'date': stat['date'], 'failure_rate': stat['amd_failure_rate'], 'platform': 'AMD', 'change': amd_change},
            {'date': stat['date'], 'failure_rate': stat['nvidia_failure_rate'], 'platform': 'NVIDIA', 'change': nvidia_change}
        ])
    
    failure_rate_df = pd.DataFrame(failure_rate_data)
    
    # Create AMD test results data
    amd_data = []
    for i, stat in enumerate(daily_stats):
        # Calculate change from previous point for each test type
        passed_change = 0
        failed_change = 0
        skipped_change = 0
        if i > 0:
            passed_change = stat['amd_passed'] - daily_stats[i-1]['amd_passed']
            failed_change = stat['amd_failed'] - daily_stats[i-1]['amd_failed']
            skipped_change = stat['amd_skipped'] - daily_stats[i-1]['amd_skipped']
        
        amd_data.extend([
            {'date': stat['date'], 'count': stat['amd_passed'], 'test_type': 'Passed', 'change': passed_change},
            {'date': stat['date'], 'count': stat['amd_failed'], 'test_type': 'Failed', 'change': failed_change},
            {'date': stat['date'], 'count': stat['amd_skipped'], 'test_type': 'Skipped', 'change': skipped_change}
        ])
    
    amd_df = pd.DataFrame(amd_data)
    
    # Create NVIDIA test results data
    nvidia_data = []
    for i, stat in enumerate(daily_stats):
        # Calculate change from previous point for each test type
        passed_change = 0
        failed_change = 0
        skipped_change = 0
        if i > 0:
            passed_change = stat['nvidia_passed'] - daily_stats[i-1]['nvidia_passed']
            failed_change = stat['nvidia_failed'] - daily_stats[i-1]['nvidia_failed']
            skipped_change = stat['nvidia_skipped'] - daily_stats[i-1]['nvidia_skipped']
        
        nvidia_data.extend([
            {'date': stat['date'], 'count': stat['nvidia_passed'], 'test_type': 'Passed', 'change': passed_change},
            {'date': stat['date'], 'count': stat['nvidia_failed'], 'test_type': 'Failed', 'change': failed_change},
            {'date': stat['date'], 'count': stat['nvidia_skipped'], 'test_type': 'Skipped', 'change': skipped_change}
        ])
    
    nvidia_df = pd.DataFrame(nvidia_data)
    
    return {
        'failure_rates': gr.LinePlot(
            failure_rate_df,
            x="date",
            y="failure_rate",
            color="platform",
            color_map={"AMD": "#FF6B6B", "NVIDIA": "#4ECDC4"},
            title="Overall Failure Rates Over Time",
            tooltip=["failure_rate", "date", "change"],
            height=300,
            x_label_angle=45,
            y_title="Failure Rate (%)"
        ),
        'amd_tests': gr.LinePlot(
            amd_df,
            x="date",
            y="count",
            color="test_type",
            color_map={"Passed": "#4CAF50", "Failed": "#E53E3E", "Skipped": "#FFA500"},
            title="AMD Test Results Over Time",
            tooltip=["count", "date", "change"],
            height=300,
            x_label_angle=45,
            y_title="Number of Tests"
        ),
        'nvidia_tests': gr.LinePlot(
            nvidia_df,
            x="date",
            y="count",
            color="test_type",
            color_map={"Passed": "#4CAF50", "Failed": "#E53E3E", "Skipped": "#FFA500"},
            title="NVIDIA Test Results Over Time",
            tooltip=["count", "date", "change"],
            height=300,
            x_label_angle=45,
            y_title="Number of Tests"
        )
    }


def create_model_time_series_gradio(historical_df: pd.DataFrame, model_name: str) -> dict:
    """Create time-series visualization for a specific model using Gradio native plots."""
    if historical_df.empty or 'date' not in historical_df.columns:
        # Return empty plots
        empty_df = pd.DataFrame({'date': [], 'count': [], 'test_type': []})
        return {
            'amd_plot': gr.LinePlot(empty_df, x="date", y="count", color="test_type", title=f"{model_name.upper()} - AMD Results Over Time", tooltip=["count", "date", "change"]),
            'nvidia_plot': gr.LinePlot(empty_df, x="date", y="count", color="test_type", title=f"{model_name.upper()} - NVIDIA Results Over Time", tooltip=["count", "date", "change"])
        }
    
    # Filter data for the specific model (model_name is the index)
    model_data = historical_df[historical_df.index.str.lower() == model_name.lower()]
    
    if model_data.empty:
        # Return empty plots
        empty_df = pd.DataFrame({'date': [], 'count': [], 'test_type': []})
        return {
            'amd_plot': gr.LinePlot(empty_df, x="date", y="count", color="test_type", title=f"{model_name.upper()} - AMD Results Over Time", tooltip=["count", "date", "change"]),
            'nvidia_plot': gr.LinePlot(empty_df, x="date", y="count", color="test_type", title=f"{model_name.upper()} - NVIDIA Results Over Time", tooltip=["count", "date", "change"])
        }
    
    # Group by date
    dates = sorted(model_data['date'].unique())
    
    amd_data = []
    nvidia_data = []
    
    for i, date in enumerate(dates):
        date_data = model_data[model_data['date'] == date]
        
        if not date_data.empty:
            # Get the first row for this date (should be only one)
            row = date_data.iloc[0]
            
            # AMD data - use the correct column names from the data structure
            amd_passed = row.get('success_amd', 0)
            amd_failed = row.get('failed_multi_no_amd', 0) + row.get('failed_single_no_amd', 0)
            amd_skipped = row.get('skipped_amd', 0)
            
            # Calculate change from previous point
            passed_change = 0
            failed_change = 0
            skipped_change = 0
            if i > 0:
                prev_date_data = model_data[model_data['date'] == dates[i-1]]
                if not prev_date_data.empty:
                    prev_row = prev_date_data.iloc[0]
                    prev_amd_passed = prev_row.get('success_amd', 0)
                    prev_amd_failed = prev_row.get('failed_multi_no_amd', 0) + prev_row.get('failed_single_no_amd', 0)
                    prev_amd_skipped = prev_row.get('skipped_amd', 0)
                    
                    passed_change = amd_passed - prev_amd_passed
                    failed_change = amd_failed - prev_amd_failed
                    skipped_change = amd_skipped - prev_amd_skipped
            
            amd_data.extend([
                {'date': date, 'count': amd_passed, 'test_type': 'Passed', 'change': passed_change},
                {'date': date, 'count': amd_failed, 'test_type': 'Failed', 'change': failed_change},
                {'date': date, 'count': amd_skipped, 'test_type': 'Skipped', 'change': skipped_change}
            ])
            
            # NVIDIA data - use the correct column names from the data structure
            nvidia_passed = row.get('success_nvidia', 0)
            nvidia_failed = row.get('failed_multi_no_nvidia', 0) + row.get('failed_single_no_nvidia', 0)
            nvidia_skipped = row.get('skipped_nvidia', 0)
            
            # Calculate change from previous point for NVIDIA
            nvidia_passed_change = 0
            nvidia_failed_change = 0
            nvidia_skipped_change = 0
            if i > 0:
                prev_date_data = model_data[model_data['date'] == dates[i-1]]
                if not prev_date_data.empty:
                    prev_row = prev_date_data.iloc[0]
                    prev_nvidia_passed = prev_row.get('success_nvidia', 0)
                    prev_nvidia_failed = prev_row.get('failed_multi_no_nvidia', 0) + prev_row.get('failed_single_no_nvidia', 0)
                    prev_nvidia_skipped = prev_row.get('skipped_nvidia', 0)
                    
                    nvidia_passed_change = nvidia_passed - prev_nvidia_passed
                    nvidia_failed_change = nvidia_failed - prev_nvidia_failed
                    nvidia_skipped_change = nvidia_skipped - prev_nvidia_skipped
            
            nvidia_data.extend([
                {'date': date, 'count': nvidia_passed, 'test_type': 'Passed', 'change': nvidia_passed_change},
                {'date': date, 'count': nvidia_failed, 'test_type': 'Failed', 'change': nvidia_failed_change},
                {'date': date, 'count': nvidia_skipped, 'test_type': 'Skipped', 'change': nvidia_skipped_change}
            ])
    
    amd_df = pd.DataFrame(amd_data)
    nvidia_df = pd.DataFrame(nvidia_data)
    
    return {
        'amd_plot': gr.LinePlot(
            amd_df,
            x="date",
            y="count",
            color="test_type",
            color_map={"Passed": "#4CAF50", "Failed": "#E53E3E", "Skipped": "#FFA500"},
            title=f"{model_name.upper()} - AMD Results Over Time",
            x_label_angle=45,
            y_title="Number of Tests",
            height=300,
            tooltip=["count", "date", "change"]
        ),
        'nvidia_plot': gr.LinePlot(
            nvidia_df,
            x="date",
            y="count",
            color="test_type",
            color_map={"Passed": "#4CAF50", "Failed": "#E53E3E", "Skipped": "#FFA500"},
            title=f"{model_name.upper()} - NVIDIA Results Over Time",
            x_label_angle=45,
            y_title="Number of Tests",
            height=300,
            tooltip=["count", "date", "change"]
        )
    }