Spaces:
Runtime error
Runtime error
| import os | |
| os.system("pip install torch") | |
| os.system("pip install 'git+https://github.com/facebookresearch/detectron2.git'") | |
| os.system("pip install layoutparser") | |
| os.system("pip install layoutparser[layoutmodels]") | |
| os.system("pip install layoutparser[ocr]") | |
| os.system("pip install Pillow==9.4.0") | |
| os.system("pip install requests") | |
| import gradio as gr | |
| import layoutparser as lp | |
| from PIL import Image | |
| from urllib.parse import urlparse | |
| import requests | |
| def get_RGB_image(image_or_path: str | Image.Image) -> bytes: | |
| if isinstance(image_or_path, str): | |
| if urlparse(image_or_path).scheme in ["http", "https"]: # Online | |
| image_or_path = Image.open( | |
| requests.get(image_or_path, stream=True).raw) | |
| else: # Local | |
| image_or_path = Image.open(image_or_path) | |
| return image_or_path.convert("RGB") | |
| def inference_factory(config_path: str, model_path: str, label_map: dict, color_map: dict, examples=[], launch=True): | |
| import traceback | |
| model: lp.elements.layout.Layout = lp.Detectron2LayoutModel( | |
| config_path=config_path, | |
| model_path=model_path, | |
| # extra_config = ["MODEL.ROI_HEADS.SCORE_THRESH_TEST", 0.8], | |
| label_map=label_map) | |
| default_threshold = 0.8 | |
| cache = { | |
| 'annotated_image': None, | |
| 'message': None, | |
| 'threshold': default_threshold, | |
| 'image': None, | |
| 'predicted': None | |
| } | |
| def truncate(f, n): | |
| return int(f * 10 ** n) / 10 ** n | |
| def fn(image: Image.Image, threshold: float = default_threshold, just_image=True): | |
| try: | |
| nonlocal cache | |
| if cache['image'] == image and cache['threshold'] == threshold and bool(cache['annotated_image']): | |
| return [cache['annotated_image'], cache['message'], cache['threshold']] | |
| layout_predicted = cache['predicted'] if cache['image'] == image else model.detect( | |
| image) | |
| threshold = truncate( | |
| min([max([block.score for block in layout_predicted] + [0])] + [threshold]), 1) | |
| blocks: List[lp.elements.layout_elements.TextBlock] = [block.set( | |
| id=f'{block.type}/{block.score:.2f}') for block in layout_predicted if block.score >= threshold] | |
| annotated_image = lp.draw_box( | |
| image, | |
| blocks, | |
| color_map=color_map, | |
| show_element_id=True, | |
| id_font_size=14, | |
| id_text_background_color='black', | |
| id_text_color='white') | |
| message = \ | |
| f'{len(blocks)} bounding boxes matched for {threshold} threshold, out of {len(layout_predicted)} total bounding boxes' if len(blocks) > 0 \ | |
| else f'No bounding boxesfor {threshold} threshold.' | |
| cache = { | |
| 'annotated_image': annotated_image, | |
| 'message': message, | |
| 'threshold': threshold, | |
| 'image': image, | |
| 'predicted': layout_predicted | |
| } | |
| return annotated_image if just_image else [annotated_image, message, threshold] | |
| except Exception as e: | |
| error = traceback.format_exc() | |
| return error if just_image else [None, error, threshold] | |
| if not launch: | |
| return fn | |
| ########################################################### | |
| ################### Start of Gradio setup ################# | |
| ########################################################### | |
| title = "Document Similarity Search using Detectron2" | |
| description = "<h2>Document Similarity Search using Detectron2<h2>" | |
| article = "<h4>More details, Links about this! - Document Similarity Search using Detectron2<h4>" | |
| css = ''' | |
| image { max-height="86vh" !important; } | |
| .center { display: flex; flex: 1 1 auto; align-items: center; align-content: center; justify-content: center; justify-items: center; } | |
| ''' | |
| def preview(image_url): | |
| try: | |
| return [gr.Tabs(selected=0), get_RGB_image(image_url), None] | |
| except: | |
| error = traceback.format_exc() | |
| return [gr.Tabs(selected=1), None, gr.HTML(value=error, visible=True)] | |
| with gr.Blocks(title=title, css=css) as app: | |
| with gr.Row(): | |
| gr.HTML(value=description, elem_classes=['center']) | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Tabs() as tabs: | |
| with gr.Tab("From Image", id=0): | |
| document_image = gr.Image(type="pil", label="Document Image") | |
| submit = gr.Button(value="Submit", variant="primary") | |
| if len(examples) > 0: | |
| gr.Examples( | |
| examples=examples, | |
| inputs=document_image, | |
| label='Select any of these test examples') | |
| with gr.Tab("From URL", id=1): | |
| image_url = gr.Textbox( | |
| label="Document Image Link", | |
| info="Paste a Link to Document Image", | |
| placeholder="https://datasets-server.huggingface.co/assets/ds4sd/icdar2023-doclaynet/--/2023.01/validation/6/image/image.jpg") | |
| error_message = gr.HTML(label="Error Message", visible=False) | |
| preview_btn = gr.Button(value="Preview", variant="primary") | |
| with gr.Column(): | |
| with gr.Group(): | |
| annotated_document_image = gr.Image(type="pil", label="Annotated Document Image") | |
| message = gr.HTML(label="Message") | |
| threshold = gr.Slider(0.0, 1.0, value=0.0, label="Threshold", info="Choose between 0.0 and 1.0") | |
| with gr.Row(): | |
| gr.HTML(value=article, elem_classes=['center']) | |
| preview_btn.click(preview, [image_url], [tabs, document_image, error_message]) | |
| submit.click( | |
| fn=lambda image: fn(image, just_image=False), | |
| inputs=document_image, | |
| outputs=[annotated_document_image, message, threshold]) | |
| threshold.change( | |
| fn=lambda image, threshold: fn(image, threshold, just_image=False), | |
| inputs=[document_image, threshold], | |
| outputs=[annotated_document_image, message]) | |
| return app.launch | |
| label_map = {0: 'Caption', 1: 'Footnote', 2: 'Formula', 3: 'List-item', 4: 'Page-footer', 5: 'Page-header', 6: 'Picture', 7: 'Section-header', 8: 'Table', 9: 'Text', 10: 'Title'} | |
| color_map = {'Caption': '#acc2d9', 'Footnote': '#56ae57', 'Formula': '#b2996e', 'List-item': '#a8ff04', 'Page-footer': '#69d84f', 'Page-header': '#894585', 'Picture': '#70b23f', 'Section-header': '#d4ffff', 'Table': '#65ab7c', 'Text': '#952e8f', 'Title': '#fcfc81'} | |
| config_path = './config.yaml' | |
| model_path = './model_final.pth' | |
| examples = ['./example.1.jpg', './example.2.jpg', './example.3.jpg'] | |
| infer = inference_factory(config_path, model_path, label_map, color_map, examples = examples) | |
| infer(debug=True) | |