Charles Kabui
commited on
Commit
·
af37085
1
Parent(s):
d9699d7
examples
Browse files- analysis.ipynb +145 -83
- main.py +21 -11
analysis.ipynb
CHANGED
|
@@ -11,7 +11,7 @@
|
|
| 11 |
},
|
| 12 |
{
|
| 13 |
"cell_type": "code",
|
| 14 |
-
"execution_count":
|
| 15 |
"metadata": {},
|
| 16 |
"outputs": [],
|
| 17 |
"source": [
|
|
@@ -301,108 +301,170 @@
|
|
| 301 |
},
|
| 302 |
{
|
| 303 |
"cell_type": "code",
|
| 304 |
-
"execution_count":
|
| 305 |
"metadata": {},
|
| 306 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 307 |
"source": [
|
| 308 |
"from main import app\n",
|
| 309 |
"\n",
|
| 310 |
"model_path = '../detectron2-layout-parser/model_final.pth'\n",
|
| 311 |
"config_path = '../detectron2-layout-parser/config.yaml'\n",
|
| 312 |
-
"
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
"metadata": {},
|
| 319 |
-
"outputs": [],
|
| 320 |
-
"source": [
|
| 321 |
-
"from PIL import Image\n",
|
| 322 |
-
"from PIL import ImageDraw\n",
|
| 323 |
-
"back = Image.open(\n",
|
| 324 |
-
" '/Users/charleskabue/document-similarity-search/detectron2-layout-parser/example.3.jpg')\n",
|
| 325 |
-
"x0, y0, x1, y1 = [100, 100, 500, 500]\n",
|
| 326 |
-
"width, height = x1 - x0, y1 - y0\n",
|
| 327 |
-
"outline_width = 10\n",
|
| 328 |
-
"poly = Image.new('RGBA', (1000, 1000))\n",
|
| 329 |
-
"pdraw = ImageDraw.Draw(poly)\n",
|
| 330 |
-
"pdraw.rectangle([x0, y0, x1-outline_width, y1-outline_width],\n",
|
| 331 |
-
" fill=(256, 0, 0, 123), outline=(0, 0, 256, 123), width=outline_width)\n",
|
| 332 |
-
"back.paste(\n",
|
| 333 |
-
" poly,\n",
|
| 334 |
-
" box=[x0, y0, x1, y1],\n",
|
| 335 |
-
" mask=poly)\n",
|
| 336 |
-
"back"
|
| 337 |
]
|
| 338 |
},
|
| 339 |
{
|
| 340 |
"cell_type": "code",
|
| 341 |
-
"execution_count":
|
| 342 |
"metadata": {},
|
| 343 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 344 |
"source": [
|
| 345 |
-
"from utils.visualize_bboxes_on_image import visualize_bboxes_on_image\n",
|
| 346 |
"\n",
|
| 347 |
-
"
|
| 348 |
-
"visualize_bboxes_on_image_kwargs = {\n",
|
| 349 |
-
" 'label_text_color': 'white',\n",
|
| 350 |
-
" 'label_fill_color': 'black',\n",
|
| 351 |
-
" 'label_text_size': 12,\n",
|
| 352 |
-
" 'label_text_padding': 3,\n",
|
| 353 |
-
" 'label_rectangle_left_margin': 0,\n",
|
| 354 |
-
" 'label_rectangle_top_margin': 0,\n",
|
| 355 |
-
" # 'bbox_outline_color': '#acc2d9',\n",
|
| 356 |
-
" # 'bbox_fill_color': (0, 0, 256, 0)\n",
|
| 357 |
-
"}\n",
|
| 358 |
-
"visualize_bboxes_on_image(\n",
|
| 359 |
-
" image,\n",
|
| 360 |
-
" [[100, 100, 500, 500]],\n",
|
| 361 |
-
" ['Invoice Number'],\n",
|
| 362 |
-
" **visualize_bboxes_on_image_kwargs\n",
|
| 363 |
-
")"
|
| 364 |
-
]
|
| 365 |
-
},
|
| 366 |
-
{
|
| 367 |
-
"cell_type": "code",
|
| 368 |
-
"execution_count": null,
|
| 369 |
-
"metadata": {},
|
| 370 |
-
"outputs": [],
|
| 371 |
-
"source": [
|
| 372 |
-
"from utils.visualize_bboxes_on_image import get_color\n",
|
| 373 |
-
"import matplotlib.colors as colors\n",
|
| 374 |
"\n",
|
| 375 |
-
"
|
| 376 |
-
"
|
| 377 |
-
"
|
| 378 |
-
"
|
| 379 |
-
"
|
| 380 |
-
"
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
"metadata": {},
|
| 387 |
-
"outputs": [],
|
| 388 |
-
"source": [
|
| 389 |
-
"from utils.get_RGB_image import get_RGB_image\n",
|
| 390 |
-
"url = 'https://www.lifewire.com/thmb/GG6qBbZxV0mM7Kvgni3u-NtjVp8=/750x0/filters:no_upscale():max_bytes(150000):strip_icc():format(webp)/photopea-online-picture-editor-5bead7d446e0fb00267a5ac1.png'\n",
|
| 391 |
-
"get_RGB_image(url)"
|
| 392 |
]
|
| 393 |
},
|
| 394 |
{
|
| 395 |
"cell_type": "code",
|
| 396 |
-
"execution_count":
|
| 397 |
"metadata": {},
|
| 398 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 399 |
"source": [
|
| 400 |
-
"
|
| 401 |
-
"
|
| 402 |
-
"\n",
|
| 403 |
-
"
|
| 404 |
-
"
|
| 405 |
-
"
|
|
|
|
|
|
|
| 406 |
]
|
| 407 |
}
|
| 408 |
],
|
|
|
|
| 11 |
},
|
| 12 |
{
|
| 13 |
"cell_type": "code",
|
| 14 |
+
"execution_count": 1,
|
| 15 |
"metadata": {},
|
| 16 |
"outputs": [],
|
| 17 |
"source": [
|
|
|
|
| 301 |
},
|
| 302 |
{
|
| 303 |
"cell_type": "code",
|
| 304 |
+
"execution_count": 22,
|
| 305 |
"metadata": {},
|
| 306 |
+
"outputs": [
|
| 307 |
+
{
|
| 308 |
+
"name": "stdout",
|
| 309 |
+
"output_type": "stream",
|
| 310 |
+
"text": [
|
| 311 |
+
"Running on local URL: http://127.0.0.1:7862\n",
|
| 312 |
+
"\n",
|
| 313 |
+
"To create a public link, set `share=True` in `launch()`.\n"
|
| 314 |
+
]
|
| 315 |
+
},
|
| 316 |
+
{
|
| 317 |
+
"data": {
|
| 318 |
+
"text/html": [
|
| 319 |
+
"<div><iframe src=\"http://127.0.0.1:7862/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
| 320 |
+
],
|
| 321 |
+
"text/plain": [
|
| 322 |
+
"<IPython.core.display.HTML object>"
|
| 323 |
+
]
|
| 324 |
+
},
|
| 325 |
+
"metadata": {},
|
| 326 |
+
"output_type": "display_data"
|
| 327 |
+
},
|
| 328 |
+
{
|
| 329 |
+
"name": "stderr",
|
| 330 |
+
"output_type": "stream",
|
| 331 |
+
"text": [
|
| 332 |
+
"/Users/charleskabue/miniconda3/envs/dss-env/lib/python3.10/site-packages/torch/functional.py:504: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at /Users/runner/work/_temp/anaconda/conda-bld/pytorch_1695391816234/work/aten/src/ATen/native/TensorShape.cpp:3527.)\n",
|
| 333 |
+
" return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]\n"
|
| 334 |
+
]
|
| 335 |
+
},
|
| 336 |
+
{
|
| 337 |
+
"name": "stdout",
|
| 338 |
+
"output_type": "stream",
|
| 339 |
+
"text": [
|
| 340 |
+
"Keyboard interruption in main thread... closing server.\n"
|
| 341 |
+
]
|
| 342 |
+
},
|
| 343 |
+
{
|
| 344 |
+
"data": {
|
| 345 |
+
"text/plain": []
|
| 346 |
+
},
|
| 347 |
+
"execution_count": 22,
|
| 348 |
+
"metadata": {},
|
| 349 |
+
"output_type": "execute_result"
|
| 350 |
+
}
|
| 351 |
+
],
|
| 352 |
"source": [
|
| 353 |
"from main import app\n",
|
| 354 |
"\n",
|
| 355 |
"model_path = '../detectron2-layout-parser/model_final.pth'\n",
|
| 356 |
"config_path = '../detectron2-layout-parser/config.yaml'\n",
|
| 357 |
+
"examples = [\n",
|
| 358 |
+
" '/Users/charleskabue/document-similarity-search/detectron2-layout-parser/example.1.jpg',\n",
|
| 359 |
+
" '/Users/charleskabue/document-similarity-search/detectron2-layout-parser/example.2.jpg',\n",
|
| 360 |
+
" '/Users/charleskabue/document-similarity-search/detectron2-layout-parser/example.3.jpg',\n",
|
| 361 |
+
" ] * 5\n",
|
| 362 |
+
"app(model_path=model_path, config_path=config_path, examples=examples, debug=True)"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 363 |
]
|
| 364 |
},
|
| 365 |
{
|
| 366 |
"cell_type": "code",
|
| 367 |
+
"execution_count": 16,
|
| 368 |
"metadata": {},
|
| 369 |
+
"outputs": [
|
| 370 |
+
{
|
| 371 |
+
"name": "stdout",
|
| 372 |
+
"output_type": "stream",
|
| 373 |
+
"text": [
|
| 374 |
+
"Running on local URL: http://127.0.0.1:7861\n",
|
| 375 |
+
"\n",
|
| 376 |
+
"To create a public link, set `share=True` in `launch()`.\n"
|
| 377 |
+
]
|
| 378 |
+
},
|
| 379 |
+
{
|
| 380 |
+
"data": {
|
| 381 |
+
"text/html": [
|
| 382 |
+
"<div><iframe src=\"http://127.0.0.1:7861/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
| 383 |
+
],
|
| 384 |
+
"text/plain": [
|
| 385 |
+
"<IPython.core.display.HTML object>"
|
| 386 |
+
]
|
| 387 |
+
},
|
| 388 |
+
"metadata": {},
|
| 389 |
+
"output_type": "display_data"
|
| 390 |
+
},
|
| 391 |
+
{
|
| 392 |
+
"data": {
|
| 393 |
+
"text/plain": []
|
| 394 |
+
},
|
| 395 |
+
"execution_count": 16,
|
| 396 |
+
"metadata": {},
|
| 397 |
+
"output_type": "execute_result"
|
| 398 |
+
}
|
| 399 |
+
],
|
| 400 |
"source": [
|
|
|
|
| 401 |
"\n",
|
| 402 |
+
"import gradio as gr\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 403 |
"\n",
|
| 404 |
+
"def classify_image(image):\n",
|
| 405 |
+
" # Replace with your image classification logic\n",
|
| 406 |
+
" # (e.g., using a pre-trained model or custom implementation)\n",
|
| 407 |
+
" classification_results = {\"cat\": 0.8, \"dog\": 0.2}\n",
|
| 408 |
+
" return classification_results\n",
|
| 409 |
+
"\n",
|
| 410 |
+
"image_input = gr.components.Image(type=\"pil\") # Allow image upload\n",
|
| 411 |
+
"label = gr.components.Label(num_top_classes=3) # Show top 3 predictions\n",
|
| 412 |
+
"\n",
|
| 413 |
+
"interface = gr.Interface(classify_image, inputs=image_input, outputs=label)\n",
|
| 414 |
+
"interface.launch()"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 415 |
]
|
| 416 |
},
|
| 417 |
{
|
| 418 |
"cell_type": "code",
|
| 419 |
+
"execution_count": 15,
|
| 420 |
"metadata": {},
|
| 421 |
+
"outputs": [
|
| 422 |
+
{
|
| 423 |
+
"name": "stdout",
|
| 424 |
+
"output_type": "stream",
|
| 425 |
+
"text": [
|
| 426 |
+
"Running on local URL: http://127.0.0.1:7861\n",
|
| 427 |
+
"\n",
|
| 428 |
+
"To create a public link, set `share=True` in `launch()`.\n"
|
| 429 |
+
]
|
| 430 |
+
},
|
| 431 |
+
{
|
| 432 |
+
"data": {
|
| 433 |
+
"text/html": [
|
| 434 |
+
"<div><iframe src=\"http://127.0.0.1:7861/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
| 435 |
+
],
|
| 436 |
+
"text/plain": [
|
| 437 |
+
"<IPython.core.display.HTML object>"
|
| 438 |
+
]
|
| 439 |
+
},
|
| 440 |
+
"metadata": {},
|
| 441 |
+
"output_type": "display_data"
|
| 442 |
+
},
|
| 443 |
+
{
|
| 444 |
+
"name": "stdout",
|
| 445 |
+
"output_type": "stream",
|
| 446 |
+
"text": [
|
| 447 |
+
"Keyboard interruption in main thread... closing server.\n"
|
| 448 |
+
]
|
| 449 |
+
},
|
| 450 |
+
{
|
| 451 |
+
"data": {
|
| 452 |
+
"text/plain": []
|
| 453 |
+
},
|
| 454 |
+
"execution_count": 15,
|
| 455 |
+
"metadata": {},
|
| 456 |
+
"output_type": "execute_result"
|
| 457 |
+
}
|
| 458 |
+
],
|
| 459 |
"source": [
|
| 460 |
+
"with gr.Blocks() as interface:\n",
|
| 461 |
+
" document = gr.Image(\n",
|
| 462 |
+
" type=\"pil\", label=f\"Document\", interactive=False, show_download_button=True)\n",
|
| 463 |
+
" gr.Examples(\n",
|
| 464 |
+
" examples=examples,\n",
|
| 465 |
+
" inputs=document,\n",
|
| 466 |
+
" label='Select any of these test document images')\n",
|
| 467 |
+
"interface.launch(debug=True)"
|
| 468 |
]
|
| 469 |
}
|
| 470 |
],
|
main.py
CHANGED
|
@@ -129,7 +129,7 @@ def load_image(filename, page=0):
|
|
| 129 |
first_error = e
|
| 130 |
image = get_RGB_image(filename)
|
| 131 |
return [
|
| 132 |
-
|
| 133 |
None
|
| 134 |
]
|
| 135 |
except Exception as second_error:
|
|
@@ -145,8 +145,10 @@ def preview_url(url, page=0):
|
|
| 145 |
return [gr.Tabs(selected=1), image, error]
|
| 146 |
|
| 147 |
|
| 148 |
-
def document_view(document_number: int):
|
| 149 |
-
gr.HTML(value=f'<h4>Load the {"first" if document_number == 1 else "second"} PDF or Document Image
|
|
|
|
|
|
|
| 150 |
'center'])
|
| 151 |
with gr.Tabs() as document_tabs:
|
| 152 |
with gr.Tab("From Image", id=0):
|
|
@@ -155,7 +157,7 @@ def document_view(document_number: int):
|
|
| 155 |
document_error_message = gr.HTML(
|
| 156 |
label="Error Message", visible=False)
|
| 157 |
document_preview = gr.UploadButton(
|
| 158 |
-
"Upload PDF or Document Image",
|
| 159 |
file_types=["image", ".pdf"],
|
| 160 |
file_count="single")
|
| 161 |
with gr.Tab("From URL", id=1):
|
|
@@ -166,7 +168,12 @@ def document_view(document_number: int):
|
|
| 166 |
document_url_error_message = gr.HTML(
|
| 167 |
label="Error Message", visible=False)
|
| 168 |
document_url_preview = gr.Button(
|
| 169 |
-
value="Preview", variant="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
document_preview.upload(
|
| 171 |
fn=lambda file: load_image(file.name),
|
| 172 |
inputs=[document_preview],
|
|
@@ -175,10 +182,14 @@ def document_view(document_number: int):
|
|
| 175 |
fn=preview_url,
|
| 176 |
inputs=[document_url],
|
| 177 |
outputs=[document_tabs, document, document_url_error_message])
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
return document
|
| 179 |
|
| 180 |
|
| 181 |
-
def app(*, model_path, config_path, debug=False):
|
| 182 |
model: lp.Detectron2LayoutModel = lp.Detectron2LayoutModel(
|
| 183 |
config_path=config_path,
|
| 184 |
model_path=model_path,
|
|
@@ -190,14 +201,14 @@ def app(*, model_path, config_path, debug=False):
|
|
| 190 |
.center { display: flex; flex: 1 1 auto; align-items: center; align-content: center; justify-content: center; justify-items: center; }
|
| 191 |
.hr { width: 100%; display: block; padding: 0; margin: 0; background: gray; height: 4px; border: none; }
|
| 192 |
'''
|
| 193 |
-
with gr.Blocks(title=title, css=css) as
|
| 194 |
with gr.Row():
|
| 195 |
gr.HTML(value=description, elem_classes=['center'])
|
| 196 |
with gr.Row(equal_height=False):
|
| 197 |
with gr.Column():
|
| 198 |
-
document_1_image = document_view(1)
|
| 199 |
with gr.Column():
|
| 200 |
-
document_2_image = document_view(2)
|
| 201 |
gr.HTML('<hr/>', elem_classes=['hr'])
|
| 202 |
with gr.Row(elem_classes=['center']):
|
| 203 |
with gr.Column():
|
|
@@ -211,7 +222,6 @@ def app(*, model_path, config_path, debug=False):
|
|
| 211 |
info="Select the Vectors Type to use for Similarity Calculation")
|
| 212 |
similarity_output = gr.HTML(
|
| 213 |
label="Similarity Score", visible=False)
|
| 214 |
-
reset = gr.Button(value="Reset", variant="secondary")
|
| 215 |
kwargs = {
|
| 216 |
'fn': lambda document_1_image, document_2_image, vectors_type: similarity_fn(
|
| 217 |
model,
|
|
@@ -223,4 +233,4 @@ def app(*, model_path, config_path, debug=False):
|
|
| 223 |
}
|
| 224 |
submit.click(**kwargs)
|
| 225 |
vectors_type.change(**kwargs)
|
| 226 |
-
return
|
|
|
|
| 129 |
first_error = e
|
| 130 |
image = get_RGB_image(filename)
|
| 131 |
return [
|
| 132 |
+
image,
|
| 133 |
None
|
| 134 |
]
|
| 135 |
except Exception as second_error:
|
|
|
|
| 145 |
return [gr.Tabs(selected=1), image, error]
|
| 146 |
|
| 147 |
|
| 148 |
+
def document_view(document_number: int, examples: list[str] = []):
|
| 149 |
+
gr.HTML(value=f'<h4>Load the {"first" if document_number == 1 else "second"} PDF or Document Image</h4>', elem_classes=[
|
| 150 |
+
'center'])
|
| 151 |
+
gr.HTML(value=f'<p>Click the button below to upload Upload PDF or Document Image or cleck the URL tab to add using link.</p>', elem_classes=[
|
| 152 |
'center'])
|
| 153 |
with gr.Tabs() as document_tabs:
|
| 154 |
with gr.Tab("From Image", id=0):
|
|
|
|
| 157 |
document_error_message = gr.HTML(
|
| 158 |
label="Error Message", visible=False)
|
| 159 |
document_preview = gr.UploadButton(
|
| 160 |
+
label="Upload PDF or Document Image",
|
| 161 |
file_types=["image", ".pdf"],
|
| 162 |
file_count="single")
|
| 163 |
with gr.Tab("From URL", id=1):
|
|
|
|
| 168 |
document_url_error_message = gr.HTML(
|
| 169 |
label="Error Message", visible=False)
|
| 170 |
document_url_preview = gr.Button(
|
| 171 |
+
value="Preview Link Document", variant="secondary")
|
| 172 |
+
if len(examples) > 0:
|
| 173 |
+
gr.Examples(
|
| 174 |
+
examples=examples,
|
| 175 |
+
inputs=document,
|
| 176 |
+
label='Select any of these test document images')
|
| 177 |
document_preview.upload(
|
| 178 |
fn=lambda file: load_image(file.name),
|
| 179 |
inputs=[document_preview],
|
|
|
|
| 182 |
fn=preview_url,
|
| 183 |
inputs=[document_url],
|
| 184 |
outputs=[document_tabs, document, document_url_error_message])
|
| 185 |
+
document.change(
|
| 186 |
+
fn = lambda image: gr.Image(value=image, visible=True) if image else gr.Image(value=None, visible=False),
|
| 187 |
+
inputs = [document],
|
| 188 |
+
outputs = [document])
|
| 189 |
return document
|
| 190 |
|
| 191 |
|
| 192 |
+
def app(*, model_path:str, config_path:str, examples: list[str], debug=False):
|
| 193 |
model: lp.Detectron2LayoutModel = lp.Detectron2LayoutModel(
|
| 194 |
config_path=config_path,
|
| 195 |
model_path=model_path,
|
|
|
|
| 201 |
.center { display: flex; flex: 1 1 auto; align-items: center; align-content: center; justify-content: center; justify-items: center; }
|
| 202 |
.hr { width: 100%; display: block; padding: 0; margin: 0; background: gray; height: 4px; border: none; }
|
| 203 |
'''
|
| 204 |
+
with gr.Blocks(title=title, css=css) as interface:
|
| 205 |
with gr.Row():
|
| 206 |
gr.HTML(value=description, elem_classes=['center'])
|
| 207 |
with gr.Row(equal_height=False):
|
| 208 |
with gr.Column():
|
| 209 |
+
document_1_image = document_view(1, examples)
|
| 210 |
with gr.Column():
|
| 211 |
+
document_2_image = document_view(2, examples)
|
| 212 |
gr.HTML('<hr/>', elem_classes=['hr'])
|
| 213 |
with gr.Row(elem_classes=['center']):
|
| 214 |
with gr.Column():
|
|
|
|
| 222 |
info="Select the Vectors Type to use for Similarity Calculation")
|
| 223 |
similarity_output = gr.HTML(
|
| 224 |
label="Similarity Score", visible=False)
|
|
|
|
| 225 |
kwargs = {
|
| 226 |
'fn': lambda document_1_image, document_2_image, vectors_type: similarity_fn(
|
| 227 |
model,
|
|
|
|
| 233 |
}
|
| 234 |
submit.click(**kwargs)
|
| 235 |
vectors_type.change(**kwargs)
|
| 236 |
+
return interface.launch(debug=debug)
|