loliipopshock
commited on
Commit
·
ea5f6fe
1
Parent(s):
0701c1d
Add the cocosplit script
Browse files- README.md +5 -0
- utils/__init__.py +0 -0
- utils/cocosplit.py +65 -0
README.md
CHANGED
|
@@ -1 +1,6 @@
|
|
| 1 |
# Scripts for training Layout Detection Models using Detectron2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# Scripts for training Layout Detection Models using Detectron2
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
## Reference
|
| 5 |
+
|
| 6 |
+
- **[cocosplit](https://github.com/akarazniewicz/cocosplit)** A script that splits the coco annotations.
|
utils/__init__.py
ADDED
|
File without changes
|
utils/cocosplit.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Modified based on https://github.com/akarazniewicz/cocosplit/blob/master/cocosplit.py
|
| 2 |
+
|
| 3 |
+
import json
|
| 4 |
+
import argparse
|
| 5 |
+
import funcy
|
| 6 |
+
from sklearn.model_selection import train_test_split
|
| 7 |
+
|
| 8 |
+
parser = argparse.ArgumentParser(description='Splits COCO annotations file into training and test sets.')
|
| 9 |
+
parser.add_argument('annotations', metavar='coco_annotations', type=str,
|
| 10 |
+
help='Path to COCO annotations file.')
|
| 11 |
+
parser.add_argument('train', type=str, help='Where to store COCO training annotations')
|
| 12 |
+
parser.add_argument('test', type=str, help='Where to store COCO test annotations')
|
| 13 |
+
parser.add_argument('-s', dest='split_ratio', type=float, required=True,
|
| 14 |
+
help="A percentage of a split; a number in (0, 1)")
|
| 15 |
+
parser.add_argument('--having-annotations', dest='having_annotations', action='store_true',
|
| 16 |
+
help='Ignore all images without annotations. Keep only these with at least one annotation')
|
| 17 |
+
|
| 18 |
+
def save_coco(file, info, licenses, images, annotations, categories):
|
| 19 |
+
with open(file, 'wt', encoding='UTF-8') as coco:
|
| 20 |
+
json.dump({ 'info': info, 'licenses': licenses, 'images': images,
|
| 21 |
+
'annotations': annotations, 'categories': categories}, coco, indent=2, sort_keys=True)
|
| 22 |
+
|
| 23 |
+
def filter_annotations(annotations, images):
|
| 24 |
+
image_ids = funcy.lmap(lambda i: int(i['id']), images)
|
| 25 |
+
return funcy.lfilter(lambda a: int(a['image_id']) in image_ids, annotations)
|
| 26 |
+
|
| 27 |
+
def main(annotation_path,
|
| 28 |
+
split_ratio,
|
| 29 |
+
having_annotations,
|
| 30 |
+
train_save_path,
|
| 31 |
+
test_save_path,
|
| 32 |
+
random_state=None):
|
| 33 |
+
|
| 34 |
+
with open(annotation_path, 'rt', encoding='UTF-8') as annotations:
|
| 35 |
+
coco = json.load(annotations)
|
| 36 |
+
info = coco['info']
|
| 37 |
+
licenses = coco['licenses']
|
| 38 |
+
images = coco['images']
|
| 39 |
+
annotations = coco['annotations']
|
| 40 |
+
categories = coco['categories']
|
| 41 |
+
|
| 42 |
+
number_of_images = len(images)
|
| 43 |
+
|
| 44 |
+
images_with_annotations = funcy.lmap(lambda a: int(a['image_id']), annotations)
|
| 45 |
+
|
| 46 |
+
if having_annotations:
|
| 47 |
+
images = funcy.lremove(lambda i: i['id'] not in images_with_annotations, images)
|
| 48 |
+
|
| 49 |
+
x, y = train_test_split(images, train_size=split_ratio, random_state=random_state)
|
| 50 |
+
|
| 51 |
+
save_coco(train_save_path, info, licenses, x, filter_annotations(annotations, x), categories)
|
| 52 |
+
save_coco(test_save_path, info, licenses, y, filter_annotations(annotations, y), categories)
|
| 53 |
+
|
| 54 |
+
print("Saved {} entries in {} and {} in {}".format(len(x), train_save_path, len(y), test_save_path))
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
if __name__ == "__main__":
|
| 58 |
+
args = parser.parse_args()
|
| 59 |
+
|
| 60 |
+
main(args.annotation_path,
|
| 61 |
+
args.split_ratio,
|
| 62 |
+
args.having_annotations,
|
| 63 |
+
args.train,
|
| 64 |
+
args.test,
|
| 65 |
+
random_state=24)
|