Update app.py
Browse files
app.py
CHANGED
|
@@ -1,21 +1,87 @@
|
|
| 1 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import torch
|
|
|
|
|
|
|
| 3 |
import spaces
|
| 4 |
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
| 8 |
|
| 9 |
-
|
| 10 |
-
processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-large-patch14")
|
| 11 |
-
|
| 12 |
-
model = AutoModel.from_pretrained(
|
| 13 |
-
model_name_or_path,
|
| 14 |
-
torch_dtype=torch.bfloat16,
|
| 15 |
-
trust_remote_code=True).to('cuda').eval()
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
tokenizer = CLIPTokenizer.from_pretrained(model_name_or_path)
|
| 19 |
-
return model, tokenizer, processor
|
| 20 |
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer, CLIPImageProcessorProcessor, AutoProcessor, pipeline, CLIPTokenizer
|
| 2 |
+
import torchvision.transforms as T
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from PIL import Image, ImageFile
|
| 5 |
+
import requests
|
| 6 |
import torch
|
| 7 |
+
import numpy as np
|
| 8 |
+
import gradio as gr
|
| 9 |
import spaces
|
| 10 |
|
| 11 |
|
| 12 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 13 |
+
model_name_or_path = "BAAI/EVA-CLIP-8B"
|
| 14 |
|
| 15 |
+
processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-large-patch14")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
model = AutoModel.from_pretrained(
|
| 18 |
+
model_name_or_path,
|
| 19 |
+
torch_dtype=torch.bfloat16,
|
| 20 |
+
trust_remote_code=True).to(device).eval()
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
tokenizer = CLIPTokenizer.from_pretrained(model_name_or_path)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
clip_checkpoint = "openai/clip-vit-base-patch16"
|
| 27 |
+
clip_detector = pipeline(model=clip_checkpoint, task="zero-shot-image-classification", device=device)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def infer_evaclip(image, captions):
|
| 31 |
+
captions = captions.split(",")
|
| 32 |
+
input_ids = tokenizer(captions, return_tensors="pt", padding=True).input_ids.to('cuda')
|
| 33 |
+
input_pixels = processor(images=image, return_tensors="pt", padding=True).pixel_values.to('cuda')
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
with torch.no_grad(), torch.cuda.amp.autocast():
|
| 37 |
+
image_features = model.encode_image(input_pixels)
|
| 38 |
+
text_features = model.encode_text(input_ids)
|
| 39 |
+
image_features /= image_features.norm(dim=-1, keepdim=True)
|
| 40 |
+
text_features /= text_features.norm(dim=-1, keepdim=True)
|
| 41 |
+
|
| 42 |
+
label_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
|
| 43 |
+
label_probs = label_probs.cpu().numpy().tolist()[0]
|
| 44 |
+
print(captions)
|
| 45 |
+
print(label_probs)
|
| 46 |
+
return {captions[i]: label_probs[i] for i in range(len(captions))}
|
| 47 |
+
|
| 48 |
+
def clip_inference(image, labels):
|
| 49 |
+
candidate_labels = [label.lstrip(" ") for label in labels.split(",")]
|
| 50 |
+
clip_out = clip_detector(image, candidate_labels=candidate_labels)
|
| 51 |
+
return {out["label"]: float(out["score"]) for out in clip_out}
|
| 52 |
+
|
| 53 |
+
@spaces.GPU
|
| 54 |
+
def infer(image, labels):
|
| 55 |
+
clip_out = clip_inference(image, labels)
|
| 56 |
+
evaclip_out = infer_evaclip(image, labels)
|
| 57 |
+
|
| 58 |
+
return clip_out, evaclip_out
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
with gr.Blocks() as demo:
|
| 62 |
+
gr.Markdown("# EVACLIP vs CLIP π₯ ")
|
| 63 |
+
with gr.Row():
|
| 64 |
+
with gr.Column():
|
| 65 |
+
image_input = gr.Image(type="pil")
|
| 66 |
+
text_input = gr.Textbox(label="Input a list of labels")
|
| 67 |
+
run_button = gr.Button("Run", visible=True)
|
| 68 |
+
|
| 69 |
+
with gr.Column():
|
| 70 |
+
clip_output = gr.Label(label = "CLIP Output", num_top_classes=3)
|
| 71 |
+
evaclip_output = gr.Label(label = "EVA-CLIP Output", num_top_classes=3)
|
| 72 |
+
|
| 73 |
+
examples = [["./cat.png", "cat on a table, cat on a tree"]]
|
| 74 |
+
gr.Examples(
|
| 75 |
+
examples = examples,
|
| 76 |
+
inputs=[image_input, text_input],
|
| 77 |
+
outputs=[clip_output,
|
| 78 |
+
evaclip_output],
|
| 79 |
+
fn=infer,
|
| 80 |
+
cache_examples=True
|
| 81 |
+
)
|
| 82 |
+
run_button.click(fn=infer,
|
| 83 |
+
inputs=[image_input, text_input],
|
| 84 |
+
outputs=[clip_output,
|
| 85 |
+
evaclip_output])
|
| 86 |
+
|
| 87 |
+
demo.launch()
|