Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -26,7 +26,9 @@ import spacy
|
|
| 26 |
import spacy.cli
|
| 27 |
import PyPDF2
|
| 28 |
|
| 29 |
-
#
|
|
|
|
|
|
|
| 30 |
try:
|
| 31 |
nlp = spacy.load("en_core_web_sm")
|
| 32 |
except OSError:
|
|
@@ -34,27 +36,46 @@ except OSError:
|
|
| 34 |
spacy.cli.download("en_core_web_sm")
|
| 35 |
nlp = spacy.load("en_core_web_sm")
|
| 36 |
|
| 37 |
-
#
|
|
|
|
|
|
|
| 38 |
logger.add("error_logs.log", rotation="1 MB", level="ERROR")
|
| 39 |
|
| 40 |
-
#
|
|
|
|
|
|
|
| 41 |
load_dotenv()
|
| 42 |
HUGGINGFACE_TOKEN = os.getenv("HF_TOKEN")
|
| 43 |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
|
|
|
| 44 |
ENTREZ_EMAIL = os.getenv("ENTREZ_EMAIL")
|
| 45 |
|
| 46 |
if not HUGGINGFACE_TOKEN or not OPENAI_API_KEY:
|
| 47 |
logger.error("Missing Hugging Face or OpenAI credentials.")
|
| 48 |
raise ValueError("Missing credentials for Hugging Face or OpenAI.")
|
| 49 |
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
login(HUGGINGFACE_TOKEN)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
client = OpenAI(api_key=OPENAI_API_KEY)
|
| 53 |
|
|
|
|
|
|
|
|
|
|
| 54 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 55 |
logger.info(f"Using device: {device}")
|
| 56 |
|
| 57 |
-
#
|
|
|
|
|
|
|
| 58 |
MODEL_NAME = "mgbam/bert-base-finetuned-mgbam"
|
| 59 |
try:
|
| 60 |
model = AutoModelForSequenceClassification.from_pretrained(
|
|
@@ -67,7 +88,6 @@ except Exception as e:
|
|
| 67 |
logger.error(f"Model load error: {e}")
|
| 68 |
raise
|
| 69 |
|
| 70 |
-
# Model: Translation
|
| 71 |
try:
|
| 72 |
translation_model_name = "Helsinki-NLP/opus-mt-en-fr"
|
| 73 |
translation_model = MarianMTModel.from_pretrained(
|
|
@@ -85,16 +105,21 @@ LANGUAGE_MAP: Dict[str, Tuple[str, str]] = {
|
|
| 85 |
"French to English": ("fr", "en"),
|
| 86 |
}
|
| 87 |
|
| 88 |
-
#
|
|
|
|
|
|
|
| 89 |
PUBMED_SEARCH_URL = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi"
|
| 90 |
PUBMED_FETCH_URL = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi"
|
| 91 |
EUROPE_PMC_BASE_URL = "https://www.ebi.ac.uk/europepmc/webservices/rest/search"
|
|
|
|
|
|
|
| 92 |
|
| 93 |
##########################################################
|
| 94 |
# HELPER FUNCTIONS #
|
| 95 |
##########################################################
|
| 96 |
|
| 97 |
-
def safe_json_parse(text: str) -> Union[Dict, None]:
|
|
|
|
| 98 |
try:
|
| 99 |
return json.loads(text)
|
| 100 |
except json.JSONDecodeError as e:
|
|
@@ -102,7 +127,7 @@ def safe_json_parse(text: str) -> Union[Dict, None]:
|
|
| 102 |
return None
|
| 103 |
|
| 104 |
def parse_pubmed_xml(xml_data: str) -> List[Dict[str, Any]]:
|
| 105 |
-
"""Parse PubMed XML
|
| 106 |
root = ET.fromstring(xml_data)
|
| 107 |
articles = []
|
| 108 |
for article in root.findall(".//PubmedArticle"):
|
|
@@ -134,6 +159,7 @@ def parse_pubmed_xml(xml_data: str) -> List[Dict[str, Any]]:
|
|
| 134 |
##########################################################
|
| 135 |
|
| 136 |
async def fetch_articles_by_nct_id(nct_id: str) -> Dict[str, Any]:
|
|
|
|
| 137 |
params = {"query": nct_id, "format": "json"}
|
| 138 |
async with httpx.AsyncClient() as client_http:
|
| 139 |
try:
|
|
@@ -145,6 +171,7 @@ async def fetch_articles_by_nct_id(nct_id: str) -> Dict[str, Any]:
|
|
| 145 |
return {"error": str(e)}
|
| 146 |
|
| 147 |
async def fetch_articles_by_query(query_params: str) -> Dict[str, Any]:
|
|
|
|
| 148 |
parsed_params = safe_json_parse(query_params)
|
| 149 |
if not parsed_params or not isinstance(parsed_params, dict):
|
| 150 |
return {"error": "Invalid JSON."}
|
|
@@ -160,6 +187,7 @@ async def fetch_articles_by_query(query_params: str) -> Dict[str, Any]:
|
|
| 160 |
return {"error": str(e)}
|
| 161 |
|
| 162 |
async def fetch_pubmed_by_query(query_params: str) -> Dict[str, Any]:
|
|
|
|
| 163 |
parsed_params = safe_json_parse(query_params)
|
| 164 |
if not parsed_params or not isinstance(parsed_params, dict):
|
| 165 |
return {"error": "Invalid JSON for PubMed."}
|
|
@@ -174,31 +202,34 @@ async def fetch_pubmed_by_query(query_params: str) -> Dict[str, Any]:
|
|
| 174 |
|
| 175 |
async with httpx.AsyncClient() as client_http:
|
| 176 |
try:
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
|
|
|
| 180 |
id_list = search_data.get("esearchresult", {}).get("idlist", [])
|
| 181 |
if not id_list:
|
| 182 |
return {"result": ""}
|
| 183 |
|
|
|
|
| 184 |
fetch_params = {
|
| 185 |
"db": "pubmed",
|
| 186 |
"id": ",".join(id_list),
|
| 187 |
"retmode": "xml",
|
| 188 |
"email": ENTREZ_EMAIL,
|
| 189 |
}
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
return {"result":
|
| 193 |
except Exception as e:
|
| 194 |
logger.error(f"Error fetching PubMed articles: {e}")
|
| 195 |
return {"error": str(e)}
|
| 196 |
|
| 197 |
async def fetch_crossref_by_query(query_params: str) -> Dict[str, Any]:
|
|
|
|
| 198 |
parsed_params = safe_json_parse(query_params)
|
| 199 |
if not parsed_params or not isinstance(parsed_params, dict):
|
| 200 |
return {"error": "Invalid JSON for Crossref."}
|
| 201 |
-
|
| 202 |
async with httpx.AsyncClient() as client_http:
|
| 203 |
try:
|
| 204 |
response = await client_http.get(CROSSREF_API_URL, params=parsed_params)
|
|
@@ -209,7 +240,41 @@ async def fetch_crossref_by_query(query_params: str) -> Dict[str, Any]:
|
|
| 209 |
return {"error": str(e)}
|
| 210 |
|
| 211 |
##########################################################
|
| 212 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
##########################################################
|
| 214 |
|
| 215 |
def summarize_text(text: str) -> str:
|
|
@@ -307,187 +372,105 @@ def perform_named_entity_recognition(text: str) -> str:
|
|
| 307 |
return "Named Entity Recognition failed."
|
| 308 |
|
| 309 |
##########################################################
|
| 310 |
-
#
|
| 311 |
##########################################################
|
| 312 |
|
| 313 |
-
def
|
| 314 |
-
"""
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
corr_melted.columns = ["Feature1", "Feature2", "Correlation"]
|
| 336 |
-
corr_chart = (
|
| 337 |
-
alt.Chart(corr_melted)
|
| 338 |
-
.mark_rect()
|
| 339 |
-
.encode(
|
| 340 |
-
x="Feature1:O",
|
| 341 |
-
y="Feature2:O",
|
| 342 |
-
color="Correlation:Q",
|
| 343 |
-
tooltip=["Feature1", "Feature2", "Correlation"]
|
| 344 |
-
)
|
| 345 |
-
.properties(width=400, height=400, title="Correlation Heatmap")
|
| 346 |
-
)
|
| 347 |
-
|
| 348 |
-
# Distribution
|
| 349 |
-
if numeric_cols.shape[1] >= 1:
|
| 350 |
-
df_long = numeric_cols.melt(var_name='Column', value_name='Value')
|
| 351 |
-
distribution_chart = (
|
| 352 |
-
alt.Chart(df_long)
|
| 353 |
-
.mark_bar()
|
| 354 |
-
.encode(
|
| 355 |
-
alt.X("Value:Q", bin=alt.Bin(maxbins=30)),
|
| 356 |
-
alt.Y('count()'),
|
| 357 |
-
alt.Facet('Column:N', columns=2),
|
| 358 |
-
tooltip=["Value"]
|
| 359 |
-
)
|
| 360 |
-
.properties(
|
| 361 |
-
title='Distribution of Numeric Columns',
|
| 362 |
-
width=300,
|
| 363 |
-
height=200
|
| 364 |
-
)
|
| 365 |
-
.interactive()
|
| 366 |
-
)
|
| 367 |
-
|
| 368 |
-
return summary_text, corr_chart, distribution_chart
|
| 369 |
-
|
| 370 |
-
except Exception as e:
|
| 371 |
-
logger.error(f"Enhanced EDA Error: {e}")
|
| 372 |
-
return f"Enhanced EDA failed: {e}", None, None
|
| 373 |
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 377 |
|
| 378 |
def parse_csv_file_to_df(file_up: gr.File) -> pd.DataFrame:
|
| 379 |
"""
|
| 380 |
-
Safely parse
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
3) For each approach, we try multiple encodings:
|
| 384 |
-
["utf-8", "utf-8-sig", "latin1", "ISO-8859-1"].
|
| 385 |
"""
|
| 386 |
path = file_up.name
|
| 387 |
-
#
|
| 388 |
if os.path.isfile(path):
|
| 389 |
for enc in ["utf-8", "utf-8-sig", "latin1", "ISO-8859-1"]:
|
| 390 |
try:
|
| 391 |
-
|
| 392 |
-
return df
|
| 393 |
except UnicodeDecodeError:
|
| 394 |
-
logger.warning(f"CSV parse failed with
|
| 395 |
except Exception as e:
|
| 396 |
-
logger.warning(f"
|
| 397 |
-
raise ValueError("Could not parse CSV with
|
| 398 |
else:
|
| 399 |
-
# 2) Fallback: read from in-memory
|
| 400 |
if not hasattr(file_up, "file"):
|
| 401 |
-
raise ValueError("Gradio file object has no .file attribute
|
| 402 |
raw_bytes = file_up.file.read()
|
| 403 |
-
|
| 404 |
-
# Try multiple encodings on the raw bytes
|
| 405 |
for enc in ["utf-8", "utf-8-sig", "latin1", "ISO-8859-1"]:
|
| 406 |
try:
|
| 407 |
-
|
| 408 |
from io import StringIO
|
| 409 |
-
|
| 410 |
-
return df
|
| 411 |
except UnicodeDecodeError:
|
| 412 |
-
logger.warning(f"In-memory CSV parse failed with
|
| 413 |
except Exception as e:
|
| 414 |
-
logger.warning(f"
|
| 415 |
-
raise ValueError("Could not parse CSV with
|
| 416 |
|
| 417 |
def parse_excel_file_to_df(file_up: gr.File) -> pd.DataFrame:
|
| 418 |
-
"""
|
| 419 |
-
For .xls or .xlsx:
|
| 420 |
-
1) If file path exists, read from that path.
|
| 421 |
-
2) Else read from .file in memory.
|
| 422 |
-
"""
|
| 423 |
-
import os
|
| 424 |
excel_path = file_up.name
|
| 425 |
if os.path.isfile(excel_path):
|
| 426 |
return pd.read_excel(excel_path, engine="openpyxl")
|
| 427 |
else:
|
| 428 |
if not hasattr(file_up, "file"):
|
| 429 |
-
raise ValueError("Gradio file object has no .file attribute
|
| 430 |
try:
|
| 431 |
excel_bytes = file_up.file.read()
|
| 432 |
return pd.read_excel(io.BytesIO(excel_bytes), engine="openpyxl")
|
| 433 |
except Exception as e:
|
| 434 |
raise ValueError(f"Excel parse error: {e}")
|
| 435 |
|
| 436 |
-
def parse_pdf_file_as_str(file_up: gr.File) -> str:
|
| 437 |
-
"""
|
| 438 |
-
For PDFs, read pages with PyPDF2.
|
| 439 |
-
Similar two-step approach: local path or fallback to memory.
|
| 440 |
-
"""
|
| 441 |
-
pdf_path = file_up.name
|
| 442 |
-
if os.path.isfile(pdf_path):
|
| 443 |
-
with open(pdf_path, "rb") as f:
|
| 444 |
-
pdf_reader = PyPDF2.PdfReader(f)
|
| 445 |
-
text_content = []
|
| 446 |
-
for page in pdf_reader.pages:
|
| 447 |
-
text_content.append(page.extract_text() or "")
|
| 448 |
-
return "\n".join(text_content)
|
| 449 |
-
else:
|
| 450 |
-
if not hasattr(file_up, "file"):
|
| 451 |
-
raise ValueError("Gradio file object has no .file attribute. Cannot parse PDF.")
|
| 452 |
-
try:
|
| 453 |
-
pdf_bytes = file_up.file.read()
|
| 454 |
-
reader = PyPDF2.PdfReader(io.BytesIO(pdf_bytes))
|
| 455 |
-
text_content = []
|
| 456 |
-
for page in reader.pages:
|
| 457 |
-
text_content.append(page.extract_text() or "")
|
| 458 |
-
return "\n".join(text_content)
|
| 459 |
-
except Exception as e:
|
| 460 |
-
raise ValueError(f"PDF parse error: {e}")
|
| 461 |
-
|
| 462 |
-
def parse_text_file_as_str(file_up: gr.File) -> str:
|
| 463 |
-
"""
|
| 464 |
-
For .txt, do the same path or fallback approach,
|
| 465 |
-
possibly with multiple encodings if needed.
|
| 466 |
-
"""
|
| 467 |
-
path = file_up.name
|
| 468 |
-
if os.path.isfile(path):
|
| 469 |
-
with open(path, "rb") as f:
|
| 470 |
-
return f.read().decode("utf-8", errors="replace")
|
| 471 |
-
else:
|
| 472 |
-
if not hasattr(file_up, "file"):
|
| 473 |
-
raise ValueError("Gradio file object has no .file attribute. Cannot parse txt.")
|
| 474 |
-
raw_bytes = file_up.file.read()
|
| 475 |
-
return raw_bytes.decode("utf-8", errors="replace")
|
| 476 |
-
|
| 477 |
##########################################################
|
| 478 |
# GRADIO APP SETUP #
|
| 479 |
##########################################################
|
| 480 |
|
| 481 |
with gr.Blocks() as demo:
|
| 482 |
-
gr.Markdown("# 🩺
|
| 483 |
gr.Markdown("""
|
| 484 |
- **Summarize** text (GPT-3.5)
|
| 485 |
- **Predict** outcomes (fine-tuned model)
|
| 486 |
- **Translate** (English ↔ French)
|
| 487 |
- **Named Entity Recognition** (spaCy)
|
| 488 |
- **Fetch** from PubMed, Crossref, Europe PMC
|
|
|
|
| 489 |
- **Generate** PDF reports
|
| 490 |
-
-
|
| 491 |
""")
|
| 492 |
|
| 493 |
with gr.Row():
|
|
@@ -504,11 +487,11 @@ with gr.Blocks() as demo:
|
|
| 504 |
"Generate Report",
|
| 505 |
"Translate",
|
| 506 |
"Perform Named Entity Recognition",
|
| 507 |
-
"Perform Enhanced EDA",
|
| 508 |
"Fetch Clinical Studies",
|
| 509 |
"Fetch PubMed Articles (Legacy)",
|
| 510 |
"Fetch PubMed by Query",
|
| 511 |
"Fetch Crossref by Query",
|
|
|
|
| 512 |
],
|
| 513 |
label="Select an Action",
|
| 514 |
)
|
|
@@ -546,24 +529,23 @@ with gr.Blocks() as demo:
|
|
| 546 |
|
| 547 |
combined_text = txt.strip()
|
| 548 |
|
| 549 |
-
# If a file
|
| 550 |
if file_up is not None:
|
| 551 |
file_ext = os.path.splitext(file_up.name)[1].lower()
|
| 552 |
try:
|
| 553 |
if file_ext == ".txt":
|
| 554 |
-
|
| 555 |
-
combined_text += "\n" +
|
| 556 |
elif file_ext == ".pdf":
|
| 557 |
pdf_text = parse_pdf_file_as_str(file_up)
|
| 558 |
combined_text += "\n" + pdf_text
|
| 559 |
-
#
|
| 560 |
-
# Because sometimes you want the raw DataFrame, not the text.
|
| 561 |
except Exception as e:
|
| 562 |
return f"File parse error: {e}", None, None, None
|
| 563 |
|
| 564 |
-
#
|
| 565 |
if action == "Summarize":
|
| 566 |
-
# If CSV or Excel is uploaded, parse
|
| 567 |
if file_up:
|
| 568 |
fx = file_up.name.lower()
|
| 569 |
if fx.endswith(".csv"):
|
|
@@ -571,13 +553,13 @@ with gr.Blocks() as demo:
|
|
| 571 |
df_csv = parse_csv_file_to_df(file_up)
|
| 572 |
combined_text += "\n" + df_csv.to_csv(index=False)
|
| 573 |
except Exception as e:
|
| 574 |
-
return f"CSV parse error
|
| 575 |
elif fx.endswith((".xls", ".xlsx")):
|
| 576 |
try:
|
| 577 |
df_xl = parse_excel_file_to_df(file_up)
|
| 578 |
combined_text += "\n" + df_xl.to_csv(index=False)
|
| 579 |
except Exception as e:
|
| 580 |
-
return f"Excel parse error
|
| 581 |
|
| 582 |
summary = summarize_text(combined_text)
|
| 583 |
return summary, None, None, None
|
|
@@ -590,13 +572,13 @@ with gr.Blocks() as demo:
|
|
| 590 |
df_csv = parse_csv_file_to_df(file_up)
|
| 591 |
combined_text += "\n" + df_csv.to_csv(index=False)
|
| 592 |
except Exception as e:
|
| 593 |
-
return f"CSV parse error
|
| 594 |
elif fx.endswith((".xls", ".xlsx")):
|
| 595 |
try:
|
| 596 |
df_xl = parse_excel_file_to_df(file_up)
|
| 597 |
combined_text += "\n" + df_xl.to_csv(index=False)
|
| 598 |
except Exception as e:
|
| 599 |
-
return f"Excel parse error
|
| 600 |
|
| 601 |
predictions = predict_outcome(combined_text)
|
| 602 |
if isinstance(predictions, dict):
|
|
@@ -605,6 +587,7 @@ with gr.Blocks() as demo:
|
|
| 605 |
return predictions, None, None, None
|
| 606 |
|
| 607 |
elif action == "Generate Report":
|
|
|
|
| 608 |
if file_up:
|
| 609 |
fx = file_up.name.lower()
|
| 610 |
if fx.endswith(".csv"):
|
|
@@ -612,13 +595,13 @@ with gr.Blocks() as demo:
|
|
| 612 |
df_csv = parse_csv_file_to_df(file_up)
|
| 613 |
combined_text += "\n" + df_csv.to_csv(index=False)
|
| 614 |
except Exception as e:
|
| 615 |
-
return f"CSV parse error
|
| 616 |
elif fx.endswith((".xls", ".xlsx")):
|
| 617 |
try:
|
| 618 |
df_xl = parse_excel_file_to_df(file_up)
|
| 619 |
combined_text += "\n" + df_xl.to_csv(index=False)
|
| 620 |
except Exception as e:
|
| 621 |
-
return f"Excel parse error
|
| 622 |
|
| 623 |
fp = generate_report(combined_text, report_fn)
|
| 624 |
msg = f"Report generated: {fp}" if fp else "Report generation failed."
|
|
@@ -632,13 +615,13 @@ with gr.Blocks() as demo:
|
|
| 632 |
df_csv = parse_csv_file_to_df(file_up)
|
| 633 |
combined_text += "\n" + df_csv.to_csv(index=False)
|
| 634 |
except Exception as e:
|
| 635 |
-
return f"CSV parse error
|
| 636 |
elif fx.endswith((".xls", ".xlsx")):
|
| 637 |
try:
|
| 638 |
df_xl = parse_excel_file_to_df(file_up)
|
| 639 |
combined_text += "\n" + df_xl.to_csv(index=False)
|
| 640 |
except Exception as e:
|
| 641 |
-
return f"Excel parse error
|
| 642 |
|
| 643 |
translated = translate_text(combined_text, translation_opt)
|
| 644 |
return translated, None, None, None
|
|
@@ -651,20 +634,17 @@ with gr.Blocks() as demo:
|
|
| 651 |
df_csv = parse_csv_file_to_df(file_up)
|
| 652 |
combined_text += "\n" + df_csv.to_csv(index=False)
|
| 653 |
except Exception as e:
|
| 654 |
-
return f"CSV parse error
|
| 655 |
elif fx.endswith((".xls", ".xlsx")):
|
| 656 |
try:
|
| 657 |
df_xl = parse_excel_file_to_df(file_up)
|
| 658 |
combined_text += "\n" + df_xl.to_csv(index=False)
|
| 659 |
except Exception as e:
|
| 660 |
-
return f"Excel parse error
|
| 661 |
|
| 662 |
ner_result = perform_named_entity_recognition(combined_text)
|
| 663 |
return ner_result, None, None, None
|
| 664 |
|
| 665 |
-
elif action == "Perform Enhanced EDA":
|
| 666 |
-
return await _action_eda(file_up, txt)
|
| 667 |
-
|
| 668 |
elif action == "Fetch Clinical Studies":
|
| 669 |
if nct_id:
|
| 670 |
result = await fetch_articles_by_nct_id(nct_id)
|
|
@@ -708,43 +688,23 @@ with gr.Blocks() as demo:
|
|
| 708 |
)
|
| 709 |
return formatted, None, None, None
|
| 710 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 711 |
return "Invalid action.", None, None, None
|
| 712 |
|
| 713 |
-
async def _action_eda(file_up: Optional[gr.File], raw_text: str) -> Tuple[Optional[str], Optional[Any], Optional[Any], Optional[str]]:
|
| 714 |
-
"""Perform Enhanced EDA on CSV or Excel. If no file, try parsing raw_text as CSV."""
|
| 715 |
-
if file_up is None and not raw_text.strip():
|
| 716 |
-
return "No data provided for EDA.", None, None, None
|
| 717 |
-
|
| 718 |
-
if file_up:
|
| 719 |
-
ext = os.path.splitext(file_up.name)[1].lower()
|
| 720 |
-
if ext == ".csv":
|
| 721 |
-
try:
|
| 722 |
-
df = parse_csv_file_to_df(file_up)
|
| 723 |
-
eda_summary, corr_chart, dist_chart = perform_enhanced_eda(df)
|
| 724 |
-
return eda_summary, corr_chart, dist_chart, None
|
| 725 |
-
except Exception as e:
|
| 726 |
-
return f"CSV EDA failed: {e}", None, None, None
|
| 727 |
-
elif ext in [".xls", ".xlsx"]:
|
| 728 |
-
try:
|
| 729 |
-
df = parse_excel_file_to_df(file_up)
|
| 730 |
-
eda_summary, corr_chart, dist_chart = perform_enhanced_eda(df)
|
| 731 |
-
return eda_summary, corr_chart, dist_chart, None
|
| 732 |
-
except Exception as e:
|
| 733 |
-
return f"Excel EDA failed: {e}", None, None, None
|
| 734 |
-
else:
|
| 735 |
-
return "No valid CSV/Excel data for EDA.", None, None, None
|
| 736 |
-
else:
|
| 737 |
-
# If no file, maybe user pasted CSV text
|
| 738 |
-
if "," in raw_text:
|
| 739 |
-
from io import StringIO
|
| 740 |
-
try:
|
| 741 |
-
df = pd.read_csv(StringIO(raw_text))
|
| 742 |
-
eda_summary, corr_chart, dist_chart = perform_enhanced_eda(df)
|
| 743 |
-
return eda_summary, corr_chart, dist_chart, None
|
| 744 |
-
except Exception as e:
|
| 745 |
-
return f"Text-based CSV parse error: {e}", None, None, None
|
| 746 |
-
return "No valid CSV/Excel data found for EDA.", None, None, None
|
| 747 |
-
|
| 748 |
submit_btn.click(
|
| 749 |
fn=handle_action,
|
| 750 |
inputs=[action, text_input, file_input, translation_option, query_params_input, nct_id_input, report_filename_input, export_format],
|
|
|
|
| 26 |
import spacy.cli
|
| 27 |
import PyPDF2
|
| 28 |
|
| 29 |
+
# =========================
|
| 30 |
+
# 1) SpaCy Model Download
|
| 31 |
+
# =========================
|
| 32 |
try:
|
| 33 |
nlp = spacy.load("en_core_web_sm")
|
| 34 |
except OSError:
|
|
|
|
| 36 |
spacy.cli.download("en_core_web_sm")
|
| 37 |
nlp = spacy.load("en_core_web_sm")
|
| 38 |
|
| 39 |
+
# =========================
|
| 40 |
+
# 2) Logging Setup
|
| 41 |
+
# =========================
|
| 42 |
logger.add("error_logs.log", rotation="1 MB", level="ERROR")
|
| 43 |
|
| 44 |
+
# =========================
|
| 45 |
+
# 3) Environment Vars
|
| 46 |
+
# =========================
|
| 47 |
load_dotenv()
|
| 48 |
HUGGINGFACE_TOKEN = os.getenv("HF_TOKEN")
|
| 49 |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
| 50 |
+
BIOPORTAL_API_KEY = os.getenv("BIOPORTAL_API_KEY") # <--- NEW for BioPortal
|
| 51 |
ENTREZ_EMAIL = os.getenv("ENTREZ_EMAIL")
|
| 52 |
|
| 53 |
if not HUGGINGFACE_TOKEN or not OPENAI_API_KEY:
|
| 54 |
logger.error("Missing Hugging Face or OpenAI credentials.")
|
| 55 |
raise ValueError("Missing credentials for Hugging Face or OpenAI.")
|
| 56 |
|
| 57 |
+
if not BIOPORTAL_API_KEY:
|
| 58 |
+
logger.warning("No BioPortal API Key found. BioPortal queries may fail.")
|
| 59 |
+
|
| 60 |
+
# =========================
|
| 61 |
+
# 4) Hugging Face Login
|
| 62 |
+
# =========================
|
| 63 |
login(HUGGINGFACE_TOKEN)
|
| 64 |
+
|
| 65 |
+
# =========================
|
| 66 |
+
# 5) OpenAI Client
|
| 67 |
+
# =========================
|
| 68 |
client = OpenAI(api_key=OPENAI_API_KEY)
|
| 69 |
|
| 70 |
+
# =========================
|
| 71 |
+
# 6) Device (CPU/GPU)
|
| 72 |
+
# =========================
|
| 73 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 74 |
logger.info(f"Using device: {device}")
|
| 75 |
|
| 76 |
+
# =========================
|
| 77 |
+
# 7) Models Setup
|
| 78 |
+
# =========================
|
| 79 |
MODEL_NAME = "mgbam/bert-base-finetuned-mgbam"
|
| 80 |
try:
|
| 81 |
model = AutoModelForSequenceClassification.from_pretrained(
|
|
|
|
| 88 |
logger.error(f"Model load error: {e}")
|
| 89 |
raise
|
| 90 |
|
|
|
|
| 91 |
try:
|
| 92 |
translation_model_name = "Helsinki-NLP/opus-mt-en-fr"
|
| 93 |
translation_model = MarianMTModel.from_pretrained(
|
|
|
|
| 105 |
"French to English": ("fr", "en"),
|
| 106 |
}
|
| 107 |
|
| 108 |
+
# =========================
|
| 109 |
+
# 8) API Endpoints
|
| 110 |
+
# =========================
|
| 111 |
PUBMED_SEARCH_URL = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi"
|
| 112 |
PUBMED_FETCH_URL = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi"
|
| 113 |
EUROPE_PMC_BASE_URL = "https://www.ebi.ac.uk/europepmc/webservices/rest/search"
|
| 114 |
+
BIOPORTAL_API_BASE = "https://data.bioontology.org"
|
| 115 |
+
CROSSREF_API_URL = "https://api.crossref.org/works"
|
| 116 |
|
| 117 |
##########################################################
|
| 118 |
# HELPER FUNCTIONS #
|
| 119 |
##########################################################
|
| 120 |
|
| 121 |
+
def safe_json_parse(text: str) -> Union[Dict[str, Any], None]:
|
| 122 |
+
"""Parse JSON string into Python dictionary safely."""
|
| 123 |
try:
|
| 124 |
return json.loads(text)
|
| 125 |
except json.JSONDecodeError as e:
|
|
|
|
| 127 |
return None
|
| 128 |
|
| 129 |
def parse_pubmed_xml(xml_data: str) -> List[Dict[str, Any]]:
|
| 130 |
+
"""Parse PubMed XML into structured articles."""
|
| 131 |
root = ET.fromstring(xml_data)
|
| 132 |
articles = []
|
| 133 |
for article in root.findall(".//PubmedArticle"):
|
|
|
|
| 159 |
##########################################################
|
| 160 |
|
| 161 |
async def fetch_articles_by_nct_id(nct_id: str) -> Dict[str, Any]:
|
| 162 |
+
"""Europe PMC by NCT ID."""
|
| 163 |
params = {"query": nct_id, "format": "json"}
|
| 164 |
async with httpx.AsyncClient() as client_http:
|
| 165 |
try:
|
|
|
|
| 171 |
return {"error": str(e)}
|
| 172 |
|
| 173 |
async def fetch_articles_by_query(query_params: str) -> Dict[str, Any]:
|
| 174 |
+
"""Europe PMC by JSON query."""
|
| 175 |
parsed_params = safe_json_parse(query_params)
|
| 176 |
if not parsed_params or not isinstance(parsed_params, dict):
|
| 177 |
return {"error": "Invalid JSON."}
|
|
|
|
| 187 |
return {"error": str(e)}
|
| 188 |
|
| 189 |
async def fetch_pubmed_by_query(query_params: str) -> Dict[str, Any]:
|
| 190 |
+
"""PubMed by JSON query."""
|
| 191 |
parsed_params = safe_json_parse(query_params)
|
| 192 |
if not parsed_params or not isinstance(parsed_params, dict):
|
| 193 |
return {"error": "Invalid JSON for PubMed."}
|
|
|
|
| 202 |
|
| 203 |
async with httpx.AsyncClient() as client_http:
|
| 204 |
try:
|
| 205 |
+
# 1) search
|
| 206 |
+
search_resp = await client_http.get(PUBMED_SEARCH_URL, params=search_params)
|
| 207 |
+
search_resp.raise_for_status()
|
| 208 |
+
search_data = search_resp.json()
|
| 209 |
id_list = search_data.get("esearchresult", {}).get("idlist", [])
|
| 210 |
if not id_list:
|
| 211 |
return {"result": ""}
|
| 212 |
|
| 213 |
+
# 2) fetch
|
| 214 |
fetch_params = {
|
| 215 |
"db": "pubmed",
|
| 216 |
"id": ",".join(id_list),
|
| 217 |
"retmode": "xml",
|
| 218 |
"email": ENTREZ_EMAIL,
|
| 219 |
}
|
| 220 |
+
fetch_resp = await client_http.get(PUBMED_FETCH_URL, params=fetch_params)
|
| 221 |
+
fetch_resp.raise_for_status()
|
| 222 |
+
return {"result": fetch_resp.text}
|
| 223 |
except Exception as e:
|
| 224 |
logger.error(f"Error fetching PubMed articles: {e}")
|
| 225 |
return {"error": str(e)}
|
| 226 |
|
| 227 |
async def fetch_crossref_by_query(query_params: str) -> Dict[str, Any]:
|
| 228 |
+
"""Crossref by JSON query."""
|
| 229 |
parsed_params = safe_json_parse(query_params)
|
| 230 |
if not parsed_params or not isinstance(parsed_params, dict):
|
| 231 |
return {"error": "Invalid JSON for Crossref."}
|
| 232 |
+
|
| 233 |
async with httpx.AsyncClient() as client_http:
|
| 234 |
try:
|
| 235 |
response = await client_http.get(CROSSREF_API_URL, params=parsed_params)
|
|
|
|
| 240 |
return {"error": str(e)}
|
| 241 |
|
| 242 |
##########################################################
|
| 243 |
+
# BIOPORTAL INTEGRATION #
|
| 244 |
+
##########################################################
|
| 245 |
+
|
| 246 |
+
async def fetch_bioportal_by_query(query_params: str) -> Dict[str, Any]:
|
| 247 |
+
"""
|
| 248 |
+
Fetch from BioPortal using JSON query parameters.
|
| 249 |
+
Expects something like: {"q": "cancer"}
|
| 250 |
+
See: https://data.bioontology.org/documentation
|
| 251 |
+
"""
|
| 252 |
+
if not BIOPORTAL_API_KEY:
|
| 253 |
+
return {"error": "No BioPortal API Key set. Cannot fetch BioPortal data."}
|
| 254 |
+
|
| 255 |
+
parsed_params = safe_json_parse(query_params)
|
| 256 |
+
if not parsed_params or not isinstance(parsed_params, dict):
|
| 257 |
+
return {"error": "Invalid JSON for BioPortal."}
|
| 258 |
+
|
| 259 |
+
search_term = parsed_params.get("q", "")
|
| 260 |
+
if not search_term:
|
| 261 |
+
return {"error": "No 'q' found in JSON. Provide a search term."}
|
| 262 |
+
|
| 263 |
+
url = f"{BIOPORTAL_API_BASE}/search"
|
| 264 |
+
headers = {"Authorization": f"apikey token={BIOPORTAL_API_KEY}"}
|
| 265 |
+
req_params = {"q": search_term}
|
| 266 |
+
|
| 267 |
+
async with httpx.AsyncClient() as client_http:
|
| 268 |
+
try:
|
| 269 |
+
resp = await client_http.get(url, params=req_params, headers=headers)
|
| 270 |
+
resp.raise_for_status()
|
| 271 |
+
return resp.json()
|
| 272 |
+
except Exception as e:
|
| 273 |
+
logger.error(f"Error fetching BioPortal data: {e}")
|
| 274 |
+
return {"error": str(e)}
|
| 275 |
+
|
| 276 |
+
##########################################################
|
| 277 |
+
# CORE LOGIC #
|
| 278 |
##########################################################
|
| 279 |
|
| 280 |
def summarize_text(text: str) -> str:
|
|
|
|
| 372 |
return "Named Entity Recognition failed."
|
| 373 |
|
| 374 |
##########################################################
|
| 375 |
+
# FILE PARSING (TXT, PDF, CSV, EXCEL) #
|
| 376 |
##########################################################
|
| 377 |
|
| 378 |
+
def parse_pdf_file_as_str(file_up: gr.File) -> str:
|
| 379 |
+
"""Read PDF pages with PyPDF2 (local path or in-memory)."""
|
| 380 |
+
pdf_path = file_up.name
|
| 381 |
+
if os.path.isfile(pdf_path):
|
| 382 |
+
with open(pdf_path, "rb") as f:
|
| 383 |
+
reader = PyPDF2.PdfReader(f)
|
| 384 |
+
text_content = []
|
| 385 |
+
for page in reader.pages:
|
| 386 |
+
text_content.append(page.extract_text() or "")
|
| 387 |
+
return "\n".join(text_content)
|
| 388 |
+
else:
|
| 389 |
+
if not hasattr(file_up, "file"):
|
| 390 |
+
raise ValueError("Gradio file object has no .file attribute (PDF).")
|
| 391 |
+
try:
|
| 392 |
+
pdf_bytes = file_up.file.read()
|
| 393 |
+
reader = PyPDF2.PdfReader(io.BytesIO(pdf_bytes))
|
| 394 |
+
text_content = []
|
| 395 |
+
for page in reader.pages:
|
| 396 |
+
text_content.append(page.extract_text() or "")
|
| 397 |
+
return "\n".join(text_content)
|
| 398 |
+
except Exception as e:
|
| 399 |
+
raise ValueError(f"PDF parse error: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 400 |
|
| 401 |
+
def parse_text_file_as_str(file_up: gr.File) -> str:
|
| 402 |
+
"""Read .txt as UTF-8 from path or in-memory."""
|
| 403 |
+
path = file_up.name
|
| 404 |
+
if os.path.isfile(path):
|
| 405 |
+
with open(path, "rb") as f:
|
| 406 |
+
return f.read().decode("utf-8", errors="replace")
|
| 407 |
+
else:
|
| 408 |
+
if not hasattr(file_up, "file"):
|
| 409 |
+
raise ValueError("Gradio file object has no .file attribute (TXT).")
|
| 410 |
+
raw_bytes = file_up.file.read()
|
| 411 |
+
return raw_bytes.decode("utf-8", errors="replace")
|
| 412 |
|
| 413 |
def parse_csv_file_to_df(file_up: gr.File) -> pd.DataFrame:
|
| 414 |
"""
|
| 415 |
+
Safely parse CSV with multiple encodings.
|
| 416 |
+
1) Local file path or fallback .file
|
| 417 |
+
2) Encodings: ["utf-8", "utf-8-sig", "latin1", "ISO-8859-1"]
|
|
|
|
|
|
|
| 418 |
"""
|
| 419 |
path = file_up.name
|
| 420 |
+
# local path
|
| 421 |
if os.path.isfile(path):
|
| 422 |
for enc in ["utf-8", "utf-8-sig", "latin1", "ISO-8859-1"]:
|
| 423 |
try:
|
| 424 |
+
return pd.read_csv(path, encoding=enc)
|
|
|
|
| 425 |
except UnicodeDecodeError:
|
| 426 |
+
logger.warning(f"CSV parse failed with {enc}, trying next...")
|
| 427 |
except Exception as e:
|
| 428 |
+
logger.warning(f"Other CSV parse error with {enc}: {e}")
|
| 429 |
+
raise ValueError("Could not parse CSV from local path with known encodings.")
|
| 430 |
else:
|
|
|
|
| 431 |
if not hasattr(file_up, "file"):
|
| 432 |
+
raise ValueError("Gradio file object has no .file attribute (CSV).")
|
| 433 |
raw_bytes = file_up.file.read()
|
|
|
|
|
|
|
| 434 |
for enc in ["utf-8", "utf-8-sig", "latin1", "ISO-8859-1"]:
|
| 435 |
try:
|
| 436 |
+
txt_decoded = raw_bytes.decode(enc, errors="replace")
|
| 437 |
from io import StringIO
|
| 438 |
+
return pd.read_csv(StringIO(txt_decoded))
|
|
|
|
| 439 |
except UnicodeDecodeError:
|
| 440 |
+
logger.warning(f"In-memory CSV parse failed with {enc}, trying next...")
|
| 441 |
except Exception as e:
|
| 442 |
+
logger.warning(f"In-memory CSV parse error with {enc}: {e}")
|
| 443 |
+
raise ValueError("Could not parse CSV from memory with known encodings.")
|
| 444 |
|
| 445 |
def parse_excel_file_to_df(file_up: gr.File) -> pd.DataFrame:
|
| 446 |
+
"""Read Excel (.xls/.xlsx) from path or in-memory."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 447 |
excel_path = file_up.name
|
| 448 |
if os.path.isfile(excel_path):
|
| 449 |
return pd.read_excel(excel_path, engine="openpyxl")
|
| 450 |
else:
|
| 451 |
if not hasattr(file_up, "file"):
|
| 452 |
+
raise ValueError("Gradio file object has no .file attribute (Excel).")
|
| 453 |
try:
|
| 454 |
excel_bytes = file_up.file.read()
|
| 455 |
return pd.read_excel(io.BytesIO(excel_bytes), engine="openpyxl")
|
| 456 |
except Exception as e:
|
| 457 |
raise ValueError(f"Excel parse error: {e}")
|
| 458 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 459 |
##########################################################
|
| 460 |
# GRADIO APP SETUP #
|
| 461 |
##########################################################
|
| 462 |
|
| 463 |
with gr.Blocks() as demo:
|
| 464 |
+
gr.Markdown("# 🩺 Clinical Research Assistant (No EDA) + BioPortal")
|
| 465 |
gr.Markdown("""
|
| 466 |
- **Summarize** text (GPT-3.5)
|
| 467 |
- **Predict** outcomes (fine-tuned model)
|
| 468 |
- **Translate** (English ↔ French)
|
| 469 |
- **Named Entity Recognition** (spaCy)
|
| 470 |
- **Fetch** from PubMed, Crossref, Europe PMC
|
| 471 |
+
- **Fetch** from BioPortal (NEW)
|
| 472 |
- **Generate** PDF reports
|
| 473 |
+
- (EDA Removed)
|
| 474 |
""")
|
| 475 |
|
| 476 |
with gr.Row():
|
|
|
|
| 487 |
"Generate Report",
|
| 488 |
"Translate",
|
| 489 |
"Perform Named Entity Recognition",
|
|
|
|
| 490 |
"Fetch Clinical Studies",
|
| 491 |
"Fetch PubMed Articles (Legacy)",
|
| 492 |
"Fetch PubMed by Query",
|
| 493 |
"Fetch Crossref by Query",
|
| 494 |
+
"Fetch BioPortal by Query", # <-- NEW ACTION
|
| 495 |
],
|
| 496 |
label="Select an Action",
|
| 497 |
)
|
|
|
|
| 529 |
|
| 530 |
combined_text = txt.strip()
|
| 531 |
|
| 532 |
+
# 1) If user uploaded a file, parse basic text from .txt or .pdf
|
| 533 |
if file_up is not None:
|
| 534 |
file_ext = os.path.splitext(file_up.name)[1].lower()
|
| 535 |
try:
|
| 536 |
if file_ext == ".txt":
|
| 537 |
+
text_content = parse_text_file_as_str(file_up)
|
| 538 |
+
combined_text += "\n" + text_content
|
| 539 |
elif file_ext == ".pdf":
|
| 540 |
pdf_text = parse_pdf_file_as_str(file_up)
|
| 541 |
combined_text += "\n" + pdf_text
|
| 542 |
+
# CSV/Excel might be parsed in the actions below if needed
|
|
|
|
| 543 |
except Exception as e:
|
| 544 |
return f"File parse error: {e}", None, None, None
|
| 545 |
|
| 546 |
+
# 2) Action dispatch
|
| 547 |
if action == "Summarize":
|
| 548 |
+
# If CSV or Excel is uploaded, parse DataFrame -> text
|
| 549 |
if file_up:
|
| 550 |
fx = file_up.name.lower()
|
| 551 |
if fx.endswith(".csv"):
|
|
|
|
| 553 |
df_csv = parse_csv_file_to_df(file_up)
|
| 554 |
combined_text += "\n" + df_csv.to_csv(index=False)
|
| 555 |
except Exception as e:
|
| 556 |
+
return f"CSV parse error (Summarize): {e}", None, None, None
|
| 557 |
elif fx.endswith((".xls", ".xlsx")):
|
| 558 |
try:
|
| 559 |
df_xl = parse_excel_file_to_df(file_up)
|
| 560 |
combined_text += "\n" + df_xl.to_csv(index=False)
|
| 561 |
except Exception as e:
|
| 562 |
+
return f"Excel parse error (Summarize): {e}", None, None, None
|
| 563 |
|
| 564 |
summary = summarize_text(combined_text)
|
| 565 |
return summary, None, None, None
|
|
|
|
| 572 |
df_csv = parse_csv_file_to_df(file_up)
|
| 573 |
combined_text += "\n" + df_csv.to_csv(index=False)
|
| 574 |
except Exception as e:
|
| 575 |
+
return f"CSV parse error (Predict): {e}", None, None, None
|
| 576 |
elif fx.endswith((".xls", ".xlsx")):
|
| 577 |
try:
|
| 578 |
df_xl = parse_excel_file_to_df(file_up)
|
| 579 |
combined_text += "\n" + df_xl.to_csv(index=False)
|
| 580 |
except Exception as e:
|
| 581 |
+
return f"Excel parse error (Predict): {e}", None, None, None
|
| 582 |
|
| 583 |
predictions = predict_outcome(combined_text)
|
| 584 |
if isinstance(predictions, dict):
|
|
|
|
| 587 |
return predictions, None, None, None
|
| 588 |
|
| 589 |
elif action == "Generate Report":
|
| 590 |
+
# Merge CSV/Excel if user wants them in the PDF
|
| 591 |
if file_up:
|
| 592 |
fx = file_up.name.lower()
|
| 593 |
if fx.endswith(".csv"):
|
|
|
|
| 595 |
df_csv = parse_csv_file_to_df(file_up)
|
| 596 |
combined_text += "\n" + df_csv.to_csv(index=False)
|
| 597 |
except Exception as e:
|
| 598 |
+
return f"CSV parse error (Report): {e}", None, None, None
|
| 599 |
elif fx.endswith((".xls", ".xlsx")):
|
| 600 |
try:
|
| 601 |
df_xl = parse_excel_file_to_df(file_up)
|
| 602 |
combined_text += "\n" + df_xl.to_csv(index=False)
|
| 603 |
except Exception as e:
|
| 604 |
+
return f"Excel parse error (Report): {e}", None, None, None
|
| 605 |
|
| 606 |
fp = generate_report(combined_text, report_fn)
|
| 607 |
msg = f"Report generated: {fp}" if fp else "Report generation failed."
|
|
|
|
| 615 |
df_csv = parse_csv_file_to_df(file_up)
|
| 616 |
combined_text += "\n" + df_csv.to_csv(index=False)
|
| 617 |
except Exception as e:
|
| 618 |
+
return f"CSV parse error (Translate): {e}", None, None, None
|
| 619 |
elif fx.endswith((".xls", ".xlsx")):
|
| 620 |
try:
|
| 621 |
df_xl = parse_excel_file_to_df(file_up)
|
| 622 |
combined_text += "\n" + df_xl.to_csv(index=False)
|
| 623 |
except Exception as e:
|
| 624 |
+
return f"Excel parse error (Translate): {e}", None, None, None
|
| 625 |
|
| 626 |
translated = translate_text(combined_text, translation_opt)
|
| 627 |
return translated, None, None, None
|
|
|
|
| 634 |
df_csv = parse_csv_file_to_df(file_up)
|
| 635 |
combined_text += "\n" + df_csv.to_csv(index=False)
|
| 636 |
except Exception as e:
|
| 637 |
+
return f"CSV parse error (NER): {e}", None, None, None
|
| 638 |
elif fx.endswith((".xls", ".xlsx")):
|
| 639 |
try:
|
| 640 |
df_xl = parse_excel_file_to_df(file_up)
|
| 641 |
combined_text += "\n" + df_xl.to_csv(index=False)
|
| 642 |
except Exception as e:
|
| 643 |
+
return f"Excel parse error (NER): {e}", None, None, None
|
| 644 |
|
| 645 |
ner_result = perform_named_entity_recognition(combined_text)
|
| 646 |
return ner_result, None, None, None
|
| 647 |
|
|
|
|
|
|
|
|
|
|
| 648 |
elif action == "Fetch Clinical Studies":
|
| 649 |
if nct_id:
|
| 650 |
result = await fetch_articles_by_nct_id(nct_id)
|
|
|
|
| 688 |
)
|
| 689 |
return formatted, None, None, None
|
| 690 |
|
| 691 |
+
elif action == "Fetch BioPortal by Query":
|
| 692 |
+
bioportal_result = await fetch_bioportal_by_query(query_str)
|
| 693 |
+
# Typically, the results are in "collection"
|
| 694 |
+
# See: https://data.bioontology.org/documentation
|
| 695 |
+
items = bioportal_result.get("collection", [])
|
| 696 |
+
if not items:
|
| 697 |
+
return "No BioPortal results found.", None, None, None
|
| 698 |
+
|
| 699 |
+
# Format a quick listing
|
| 700 |
+
formatted = "\n\n".join(
|
| 701 |
+
f"Label: {item.get('prefLabel')}, ID: {item.get('@id')}"
|
| 702 |
+
for item in items
|
| 703 |
+
)
|
| 704 |
+
return formatted, None, None, None
|
| 705 |
+
|
| 706 |
return "Invalid action.", None, None, None
|
| 707 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 708 |
submit_btn.click(
|
| 709 |
fn=handle_action,
|
| 710 |
inputs=[action, text_input, file_input, translation_option, query_params_input, nct_id_input, report_filename_input, export_format],
|