Spaces:
Sleeping
Sleeping
Update components/pubmed_search.py
Browse files- components/pubmed_search.py +33 -16
components/pubmed_search.py
CHANGED
|
@@ -17,29 +17,46 @@ def log_error(message: str):
|
|
| 17 |
# ---------------------------- Tool Functions ----------------------------
|
| 18 |
|
| 19 |
def search_pubmed(query: str) -> list:
|
| 20 |
-
"""Searches PubMed and returns a list of article IDs."""
|
| 21 |
try:
|
| 22 |
-
Entrez.email =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
handle = Entrez.esearch(db="pubmed", term=query, retmax="5")
|
| 24 |
record = Entrez.read(handle)
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
except Exception as e:
|
| 28 |
log_error(f"PubMed search error: {e}")
|
| 29 |
return [f"Error during PubMed search: {e}"]
|
| 30 |
|
| 31 |
-
def fetch_abstract(article_id: str) -> str:
|
| 32 |
-
"""Fetches the abstract for a given PubMed article ID."""
|
| 33 |
-
try:
|
| 34 |
-
Entrez.email = os.environ.get("ENTREZ_EMAIL", "[email protected]")
|
| 35 |
-
handle = Entrez.efetch(db="pubmed", id=article_id, rettype="abstract", retmode="text")
|
| 36 |
-
abstract = handle.read()
|
| 37 |
-
handle.close()
|
| 38 |
-
return abstract
|
| 39 |
-
except Exception as e:
|
| 40 |
-
log_error(f"Error fetching abstract for {article_id}: {e}")
|
| 41 |
-
return f"Error fetching abstract for {article_id}: {e}"
|
| 42 |
-
|
| 43 |
# ---------------------------- Agent Function ----------------------------
|
| 44 |
|
| 45 |
def medai_agent(query: str) -> str:
|
|
|
|
| 17 |
# ---------------------------- Tool Functions ----------------------------
|
| 18 |
|
| 19 |
def search_pubmed(query: str) -> list:
|
| 20 |
+
"""Searches PubMed and returns a list of article IDs using semantic search."""
|
| 21 |
try:
|
| 22 |
+
Entrez.email = ENTREZ_EMAIL
|
| 23 |
+
print(f"Entrez Email: {Entrez.email}") # DEBUG: Check the email being used
|
| 24 |
+
print(f"PubMed Query: {query}") # DEBUG: Check the query being sent
|
| 25 |
+
|
| 26 |
+
# Semantic Search Using Sentence Transformers:
|
| 27 |
+
from sentence_transformers import SentenceTransformer, util
|
| 28 |
+
|
| 29 |
+
model = SentenceTransformer('all-mpnet-base-v2') #Model by all-mpnet-base-v2
|
| 30 |
+
|
| 31 |
+
# Fetch PubMed IDs
|
| 32 |
handle = Entrez.esearch(db="pubmed", term=query, retmax="5")
|
| 33 |
record = Entrez.read(handle)
|
| 34 |
+
id_list = record["IdList"]
|
| 35 |
+
|
| 36 |
+
# Fetch abstracts for all IDs:
|
| 37 |
+
abstracts = []
|
| 38 |
+
for article_id in id_list:
|
| 39 |
+
abstracts.append(fetch_abstract(article_id))
|
| 40 |
+
|
| 41 |
+
# Generate embeddings for abstracts and the query:
|
| 42 |
+
query_embedding = model.encode(query)
|
| 43 |
+
abstract_embeddings = model.encode(abstracts)
|
| 44 |
+
|
| 45 |
+
# Calculate cosine similarities
|
| 46 |
+
similarities = util.cos_sim(query_embedding, abstract_embeddings)[0]
|
| 47 |
+
|
| 48 |
+
# Sort by similarity (higher is better)
|
| 49 |
+
ranked_articles = sorted(zip(id_list, similarities), key=lambda x: x[1], reverse=True)
|
| 50 |
+
|
| 51 |
+
# Extract ranked IDs:
|
| 52 |
+
ranked_ids = [article_id for article_id, similarity in ranked_articles]
|
| 53 |
+
|
| 54 |
+
print(f"PubMed Results: {ranked_ids}") # DEBUG: Check the results
|
| 55 |
+
return ranked_ids
|
| 56 |
except Exception as e:
|
| 57 |
log_error(f"PubMed search error: {e}")
|
| 58 |
return [f"Error during PubMed search: {e}"]
|
| 59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
# ---------------------------- Agent Function ----------------------------
|
| 61 |
|
| 62 |
def medai_agent(query: str) -> str:
|