V 1.1 (Agno)
Browse files
app.py
CHANGED
|
@@ -2,10 +2,19 @@ import subprocess
|
|
| 2 |
import gradio as gr
|
| 3 |
from openai import OpenAI
|
| 4 |
import json
|
|
|
|
|
|
|
| 5 |
|
| 6 |
subprocess.Popen("bash /home/user/app/start.sh", shell=True)
|
| 7 |
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
def handle_function_call(function_name, arguments):
|
| 11 |
"""Handle function calls from the model"""
|
|
@@ -30,8 +39,6 @@ def respond(
|
|
| 30 |
message,
|
| 31 |
history: list[tuple[str, str]] = [],
|
| 32 |
system_message=None,
|
| 33 |
-
max_tokens=None,
|
| 34 |
-
temperature=0.7,
|
| 35 |
):
|
| 36 |
messages = []
|
| 37 |
if system_message:
|
|
@@ -46,97 +53,12 @@ def respond(
|
|
| 46 |
messages.append({"role": "user", "content": message})
|
| 47 |
|
| 48 |
try:
|
| 49 |
-
stream = client.chat.completions.create(
|
| 50 |
-
model="Deepseek-R1-0528-Qwen3-8B",
|
| 51 |
-
messages=messages,
|
| 52 |
-
max_tokens=max_tokens,
|
| 53 |
-
temperature=temperature,
|
| 54 |
-
stream=True,
|
| 55 |
-
tools=[
|
| 56 |
-
{
|
| 57 |
-
"type": "function",
|
| 58 |
-
"function": {
|
| 59 |
-
"name": "browser_search",
|
| 60 |
-
"description": (
|
| 61 |
-
"Search the web for a given query and return the most relevant results."
|
| 62 |
-
),
|
| 63 |
-
"parameters": {
|
| 64 |
-
"type": "object",
|
| 65 |
-
"properties": {
|
| 66 |
-
"query": {
|
| 67 |
-
"type": "string",
|
| 68 |
-
"description": "The search query string.",
|
| 69 |
-
},
|
| 70 |
-
"max_results": {
|
| 71 |
-
"type": "integer",
|
| 72 |
-
"description": (
|
| 73 |
-
"Maximum number of search results to return. "
|
| 74 |
-
"If omitted the service will use its default."
|
| 75 |
-
),
|
| 76 |
-
"default": 5,
|
| 77 |
-
},
|
| 78 |
-
},
|
| 79 |
-
"required": ["query"],
|
| 80 |
-
},
|
| 81 |
-
},
|
| 82 |
-
},
|
| 83 |
-
{
|
| 84 |
-
"type": "function",
|
| 85 |
-
"function": {
|
| 86 |
-
"name": "code_interpreter",
|
| 87 |
-
"description": (
|
| 88 |
-
"Execute Python code and return the results. "
|
| 89 |
-
"Can generate plots, perform calculations, and data analysis."
|
| 90 |
-
),
|
| 91 |
-
"parameters": {
|
| 92 |
-
"type": "object",
|
| 93 |
-
"properties": {
|
| 94 |
-
"code": {
|
| 95 |
-
"type": "string",
|
| 96 |
-
"description": "The Python code to execute.",
|
| 97 |
-
},
|
| 98 |
-
},
|
| 99 |
-
"required": ["code"],
|
| 100 |
-
},
|
| 101 |
-
},
|
| 102 |
-
},
|
| 103 |
-
],
|
| 104 |
-
)
|
| 105 |
-
|
| 106 |
print("messages", messages)
|
| 107 |
-
|
| 108 |
-
reasoning = ""
|
| 109 |
-
function_calls_to_handle = []
|
| 110 |
|
| 111 |
for chunk in stream:
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
if hasattr(delta, "tool_calls") and delta.tool_calls:
|
| 115 |
-
for tool_call in delta.tool_calls:
|
| 116 |
-
if tool_call.function:
|
| 117 |
-
function_calls_to_handle.append(
|
| 118 |
-
{
|
| 119 |
-
"name": tool_call.function.name,
|
| 120 |
-
"arguments": json.loads(tool_call.function.arguments),
|
| 121 |
-
}
|
| 122 |
-
)
|
| 123 |
-
|
| 124 |
-
if hasattr(delta, "reasoning_content") and delta.reasoning_content:
|
| 125 |
-
reasoning += delta.reasoning_content
|
| 126 |
-
elif delta.content:
|
| 127 |
-
output += delta.content
|
| 128 |
-
|
| 129 |
-
yield f"*{reasoning}*\n{output}"
|
| 130 |
-
|
| 131 |
-
if function_calls_to_handle:
|
| 132 |
-
for func_call in function_calls_to_handle:
|
| 133 |
-
func_result = handle_function_call(
|
| 134 |
-
func_call["name"], func_call["arguments"]
|
| 135 |
-
)
|
| 136 |
-
output += (
|
| 137 |
-
f"\n\n**Function Result ({func_call['name']}):**\n{func_result}"
|
| 138 |
-
)
|
| 139 |
-
yield output
|
| 140 |
|
| 141 |
except Exception as e:
|
| 142 |
print(f"[Error] {e}")
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
from openai import OpenAI
|
| 4 |
import json
|
| 5 |
+
from agno.agent import Agent, RunResponse
|
| 6 |
+
from agno.models.openai.like import OpenAILike
|
| 7 |
|
| 8 |
subprocess.Popen("bash /home/user/app/start.sh", shell=True)
|
| 9 |
|
| 10 |
+
agent = Agent(
|
| 11 |
+
model=OpenAILike(
|
| 12 |
+
id="model",
|
| 13 |
+
api_key="no-token",
|
| 14 |
+
base_url="http://0.0.0.0:8000/v1",
|
| 15 |
+
)
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
|
| 19 |
def handle_function_call(function_name, arguments):
|
| 20 |
"""Handle function calls from the model"""
|
|
|
|
| 39 |
message,
|
| 40 |
history: list[tuple[str, str]] = [],
|
| 41 |
system_message=None,
|
|
|
|
|
|
|
| 42 |
):
|
| 43 |
messages = []
|
| 44 |
if system_message:
|
|
|
|
| 53 |
messages.append({"role": "user", "content": message})
|
| 54 |
|
| 55 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
print("messages", messages)
|
| 57 |
+
stream = agent.run(messages=messages, stream=True)
|
|
|
|
|
|
|
| 58 |
|
| 59 |
for chunk in stream:
|
| 60 |
+
print("chunk", chunk)
|
| 61 |
+
yield chunk.choices[0].delta.content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
except Exception as e:
|
| 64 |
print(f"[Error] {e}")
|