Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -18,7 +18,6 @@ embeddingsa = torch.load("embeddings1.pt")
|
|
| 18 |
embeddingsa2 = torch.load("embeddings2.pt")
|
| 19 |
embeddingsa3 = torch.load("embeddings3.pt")
|
| 20 |
|
| 21 |
-
# Pre-extract DataFrame columns to avoid repeated iloc calls
|
| 22 |
df_questions = df["question"].values
|
| 23 |
df_links = df["link"].values
|
| 24 |
df2_questions = df2["question"].values
|
|
@@ -31,7 +30,6 @@ def arabic_word_tokenize(text):
|
|
| 31 |
return []
|
| 32 |
return re.findall(r'\w+', text)
|
| 33 |
|
| 34 |
-
|
| 35 |
def compute_word_overlap(query, questions):
|
| 36 |
query_words = set(arabic_word_tokenize(query))
|
| 37 |
overlaps = []
|
|
@@ -47,115 +45,68 @@ def compute_word_overlap(query, questions):
|
|
| 47 |
def predict(text):
|
| 48 |
if not text or text.strip() == "":
|
| 49 |
return "No query provided"
|
| 50 |
-
|
| 51 |
query_embedding = model.encode(text, convert_to_tensor=True)
|
| 52 |
query_embeddinga = modela.encode(text, convert_to_tensor=True)
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
sim_scores3 = util.pytorch_cos_sim(query_embedding, embeddings3)[0]
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
all_sim_scores3.append(sim_scores3)
|
| 64 |
-
|
| 65 |
-
sim_scores1a = util.pytorch_cos_sim(query_embeddinga, embeddingsa)[0]
|
| 66 |
-
sim_scores2a = util.pytorch_cos_sim(query_embeddinga, embeddingsa2)[0]
|
| 67 |
-
sim_scores3a = util.pytorch_cos_sim(query_embeddinga, embeddingsa3)[0]
|
| 68 |
-
|
| 69 |
-
all_sim_scores1.append(sim_scores1a)
|
| 70 |
-
all_sim_scores2.append(sim_scores2a)
|
| 71 |
-
all_sim_scores3.append(sim_scores3a)
|
| 72 |
-
|
| 73 |
-
sim_scores1 = torch.stack(all_sim_scores1).mean(dim=0)
|
| 74 |
-
sim_scores2 = torch.stack(all_sim_scores2).mean(dim=0)
|
| 75 |
-
sim_scores3 = torch.stack(all_sim_scores3).mean(dim=0)
|
| 76 |
-
|
| 77 |
-
# Compute word overlap scores
|
| 78 |
word_overlap1 = compute_word_overlap(text, df_questions)
|
| 79 |
-
|
| 80 |
word_overlap2 = compute_word_overlap(text, df2_questions)
|
| 81 |
word_overlap3 = compute_word_overlap(text, df3_questions)
|
| 82 |
|
| 83 |
-
|
| 84 |
-
weight = 0.5 # word overlap weight
|
| 85 |
-
combined_results = []
|
| 86 |
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
"question": df_questions[i],
|
| 91 |
"link": df_links[i],
|
| 92 |
-
"cosine_score": float(
|
| 93 |
"word_overlap_score": float(word_overlap1[i]),
|
| 94 |
-
"combined_score":
|
| 95 |
-
}
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
|
|
|
|
|
|
|
|
|
| 100 |
"question": df2_questions[i],
|
| 101 |
"link": df2_links[i],
|
| 102 |
-
"cosine_score": float(
|
| 103 |
"word_overlap_score": float(word_overlap2[i]),
|
| 104 |
-
"combined_score":
|
| 105 |
-
}
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
| 110 |
"question": df3_questions[i],
|
| 111 |
"link": df3_links[i],
|
| 112 |
-
"cosine_score": float(
|
| 113 |
"word_overlap_score": float(word_overlap3[i]),
|
| 114 |
-
"combined_score":
|
| 115 |
-
}
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
# Also keep your original top1/top2/top3 as is
|
| 121 |
-
top3_scores1, top3_idx1 = sim_scores1.topk(3)
|
| 122 |
-
top3_scores2, top3_idx2 = sim_scores2.topk(3)
|
| 123 |
-
top3_scores3, top3_idx3 = sim_scores3.topk(3)
|
| 124 |
-
|
| 125 |
-
top3_idx1_cpu = top3_idx1.cpu().numpy()
|
| 126 |
-
top3_idx2_cpu = top3_idx2.cpu().numpy()
|
| 127 |
-
top3_idx3_cpu = top3_idx3.cpu().numpy()
|
| 128 |
-
|
| 129 |
-
top3_scores1_cpu = top3_scores1.cpu().numpy()
|
| 130 |
-
top3_scores2_cpu = top3_scores2.cpu().numpy()
|
| 131 |
-
top3_scores3_cpu = top3_scores3.cpu().numpy()
|
| 132 |
|
| 133 |
results = {
|
| 134 |
-
"top1":
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
"link": df_links[idx],
|
| 138 |
-
"score": float(score)
|
| 139 |
-
}
|
| 140 |
-
for idx, score in zip(top3_idx1_cpu, top3_scores1_cpu)
|
| 141 |
-
],
|
| 142 |
-
"top2": [
|
| 143 |
-
{
|
| 144 |
-
"question": df2_questions[idx],
|
| 145 |
-
"link": df2_links[idx],
|
| 146 |
-
"score": float(score)
|
| 147 |
-
}
|
| 148 |
-
for idx, score in zip(top3_idx2_cpu, top3_scores2_cpu)
|
| 149 |
-
],
|
| 150 |
-
"top3": [
|
| 151 |
-
{
|
| 152 |
-
"question": df3_questions[idx],
|
| 153 |
-
"link": df3_links[idx],
|
| 154 |
-
"score": float(score)
|
| 155 |
-
}
|
| 156 |
-
for idx, score in zip(top3_idx3_cpu, top3_scores3_cpu)
|
| 157 |
-
],
|
| 158 |
-
"top3_combined": top3_combined
|
| 159 |
}
|
| 160 |
|
| 161 |
return results
|
|
|
|
| 18 |
embeddingsa2 = torch.load("embeddings2.pt")
|
| 19 |
embeddingsa3 = torch.load("embeddings3.pt")
|
| 20 |
|
|
|
|
| 21 |
df_questions = df["question"].values
|
| 22 |
df_links = df["link"].values
|
| 23 |
df2_questions = df2["question"].values
|
|
|
|
| 30 |
return []
|
| 31 |
return re.findall(r'\w+', text)
|
| 32 |
|
|
|
|
| 33 |
def compute_word_overlap(query, questions):
|
| 34 |
query_words = set(arabic_word_tokenize(query))
|
| 35 |
overlaps = []
|
|
|
|
| 45 |
def predict(text):
|
| 46 |
if not text or text.strip() == "":
|
| 47 |
return "No query provided"
|
| 48 |
+
|
| 49 |
query_embedding = model.encode(text, convert_to_tensor=True)
|
| 50 |
query_embeddinga = modela.encode(text, convert_to_tensor=True)
|
| 51 |
+
|
| 52 |
+
# Cosine similarities
|
| 53 |
+
sim_scores1 = (util.pytorch_cos_sim(query_embedding, embeddings)[0] +
|
| 54 |
+
util.pytorch_cos_sim(query_embeddinga, embeddingsa)[0]) / 2
|
| 55 |
+
sim_scores2 = (util.pytorch_cos_sim(query_embedding, embeddings2)[0] +
|
| 56 |
+
util.pytorch_cos_sim(query_embeddinga, embeddingsa2)[0]) / 2
|
| 57 |
+
sim_scores3 = (util.pytorch_cos_sim(query_embedding, embeddings3)[0] +
|
| 58 |
+
util.pytorch_cos_sim(query_embeddinga, embeddingsa3)[0]) / 2
|
| 59 |
+
|
| 60 |
+
# Word overlaps
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
word_overlap1 = compute_word_overlap(text, df_questions)
|
|
|
|
| 62 |
word_overlap2 = compute_word_overlap(text, df2_questions)
|
| 63 |
word_overlap3 = compute_word_overlap(text, df3_questions)
|
| 64 |
|
| 65 |
+
weight = 0.4
|
|
|
|
|
|
|
| 66 |
|
| 67 |
+
# Collect top1
|
| 68 |
+
combined1 = [
|
| 69 |
+
{
|
| 70 |
"question": df_questions[i],
|
| 71 |
"link": df_links[i],
|
| 72 |
+
"cosine_score": float(sim_scores1[i].cpu().item()),
|
| 73 |
"word_overlap_score": float(word_overlap1[i]),
|
| 74 |
+
"combined_score": float(sim_scores1[i].cpu().item()) + weight * word_overlap1[i]
|
| 75 |
+
}
|
| 76 |
+
for i in range(len(df_questions))
|
| 77 |
+
]
|
| 78 |
+
top1 = sorted(combined1, key=lambda x: x["combined_score"], reverse=True)[:3]
|
| 79 |
+
|
| 80 |
+
# Collect top2
|
| 81 |
+
combined2 = [
|
| 82 |
+
{
|
| 83 |
"question": df2_questions[i],
|
| 84 |
"link": df2_links[i],
|
| 85 |
+
"cosine_score": float(sim_scores2[i].cpu().item()),
|
| 86 |
"word_overlap_score": float(word_overlap2[i]),
|
| 87 |
+
"combined_score": float(sim_scores2[i].cpu().item()) + weight * word_overlap2[i]
|
| 88 |
+
}
|
| 89 |
+
for i in range(len(df2_questions))
|
| 90 |
+
]
|
| 91 |
+
top2 = sorted(combined2, key=lambda x: x["combined_score"], reverse=True)[:3]
|
| 92 |
+
|
| 93 |
+
# Collect top3
|
| 94 |
+
combined3 = [
|
| 95 |
+
{
|
| 96 |
"question": df3_questions[i],
|
| 97 |
"link": df3_links[i],
|
| 98 |
+
"cosine_score": float(sim_scores3[i].cpu().item()),
|
| 99 |
"word_overlap_score": float(word_overlap3[i]),
|
| 100 |
+
"combined_score": float(sim_scores3[i].cpu().item()) + weight * word_overlap3[i]
|
| 101 |
+
}
|
| 102 |
+
for i in range(len(df3_questions))
|
| 103 |
+
]
|
| 104 |
+
top3 = sorted(combined3, key=lambda x: x["combined_score"], reverse=True)[:3]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
results = {
|
| 107 |
+
"top1": top1,
|
| 108 |
+
"top2": top2,
|
| 109 |
+
"top3": top3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
}
|
| 111 |
|
| 112 |
return results
|