Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -46,6 +46,71 @@
|
|
| 46 |
# iface.launch()
|
| 47 |
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
import torch
|
| 50 |
import pandas as pd
|
| 51 |
from sentence_transformers import SentenceTransformer, util
|
|
@@ -57,54 +122,34 @@ df2 = pd.read_csv("cleaned2.csv")
|
|
| 57 |
embeddings = torch.load("embeddings1.pt")
|
| 58 |
embeddings2 = torch.load("embeddings2.pt")
|
| 59 |
|
| 60 |
-
|
| 61 |
-
#
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
# "question2": df2.iloc[top_idx2]["question"],
|
| 69 |
-
# "link2": df2.iloc[top_idx2]["link"]
|
| 70 |
-
# }
|
| 71 |
-
|
| 72 |
-
def search_fatwa(data):
|
| 73 |
-
query = data[0] if isinstance(data, list) else data
|
| 74 |
-
if not query:
|
| 75 |
-
return {"question1": "", "link1": "", "question2": "", "link2": ""}
|
| 76 |
query_embedding = model.encode(query, convert_to_tensor=True)
|
| 77 |
top_idx = int(util.pytorch_cos_sim(query_embedding, embeddings)[0].argmax())
|
| 78 |
top_idx2 = int(util.pytorch_cos_sim(query_embedding, embeddings2)[0].argmax())
|
| 79 |
-
|
| 80 |
-
#
|
| 81 |
-
# "link1": df.iloc[top_idx]["link"],
|
| 82 |
-
# "question2": df2.iloc[top_idx2]["question"],
|
| 83 |
-
# "link2": df2.iloc[top_idx2]["link"]
|
| 84 |
-
# }
|
| 85 |
result = f"""Question 1: {df.iloc[top_idx]["question"]}
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
|
|
|
| 90 |
return result
|
| 91 |
|
|
|
|
| 92 |
iface = gr.Interface(
|
| 93 |
fn=search_fatwa,
|
| 94 |
-
inputs=[gr.Textbox(label="text", lines=3)],
|
| 95 |
-
outputs=
|
|
|
|
| 96 |
)
|
| 97 |
|
| 98 |
-
#
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
# iface = gr.Interface(
|
| 104 |
-
# fn=predict,
|
| 105 |
-
# inputs=[gr.Textbox(label="text", lines=3)],
|
| 106 |
-
# outputs='text',
|
| 107 |
-
# title=title,
|
| 108 |
-
# )
|
| 109 |
-
|
| 110 |
-
iface.launch()
|
|
|
|
| 46 |
# iface.launch()
|
| 47 |
|
| 48 |
|
| 49 |
+
# import torch
|
| 50 |
+
# import pandas as pd
|
| 51 |
+
# from sentence_transformers import SentenceTransformer, util
|
| 52 |
+
# import gradio as gr
|
| 53 |
+
|
| 54 |
+
# model = SentenceTransformer("paraphrase-multilingual-MiniLM-L12-v2")
|
| 55 |
+
# df = pd.read_csv("cleaned1.csv")
|
| 56 |
+
# df2 = pd.read_csv("cleaned2.csv")
|
| 57 |
+
# embeddings = torch.load("embeddings1.pt")
|
| 58 |
+
# embeddings2 = torch.load("embeddings2.pt")
|
| 59 |
+
|
| 60 |
+
# # def search_fatwa(data):
|
| 61 |
+
# # query = data[0] if data else ""
|
| 62 |
+
# # query_embedding = model.encode(query, convert_to_tensor=True)
|
| 63 |
+
# # top_idx = int(util.pytorch_cos_sim(query_embedding, embeddings)[0].argmax())
|
| 64 |
+
# # top_idx2 = int(util.pytorch_cos_sim(query_embedding, embeddings2)[0].argmax())
|
| 65 |
+
# # return {
|
| 66 |
+
# # "question1": df.iloc[top_idx]["question"],
|
| 67 |
+
# # "link1": df.iloc[top_idx]["link"],
|
| 68 |
+
# # "question2": df2.iloc[top_idx2]["question"],
|
| 69 |
+
# # "link2": df2.iloc[top_idx2]["link"]
|
| 70 |
+
# # }
|
| 71 |
+
|
| 72 |
+
# def search_fatwa(data):
|
| 73 |
+
# query = data[0] if isinstance(data, list) else data
|
| 74 |
+
# if not query:
|
| 75 |
+
# return {"question1": "", "link1": "", "question2": "", "link2": ""}
|
| 76 |
+
# query_embedding = model.encode(query, convert_to_tensor=True)
|
| 77 |
+
# top_idx = int(util.pytorch_cos_sim(query_embedding, embeddings)[0].argmax())
|
| 78 |
+
# top_idx2 = int(util.pytorch_cos_sim(query_embedding, embeddings2)[0].argmax())
|
| 79 |
+
# # return {
|
| 80 |
+
# # "question1": df.iloc[top_idx]["question"],
|
| 81 |
+
# # "link1": df.iloc[top_idx]["link"],
|
| 82 |
+
# # "question2": df2.iloc[top_idx2]["question"],
|
| 83 |
+
# # "link2": df2.iloc[top_idx2]["link"]
|
| 84 |
+
# # }
|
| 85 |
+
# result = f"""Question 1: {df.iloc[top_idx]["question"]}
|
| 86 |
+
# Link 1: {df.iloc[top_idx]["link"]}
|
| 87 |
+
|
| 88 |
+
# Question 2: {df2.iloc[top_idx2]["question"]}
|
| 89 |
+
# Link 2: {df2.iloc[top_idx2]["link"]}"""
|
| 90 |
+
# return result
|
| 91 |
+
|
| 92 |
+
# iface = gr.Interface(
|
| 93 |
+
# fn=search_fatwa,
|
| 94 |
+
# inputs=[gr.Textbox(label="text", lines=3)],
|
| 95 |
+
# outputs="text" # Changed from "json" to "text"
|
| 96 |
+
# )
|
| 97 |
+
|
| 98 |
+
# # iface = gr.Interface(fn=search_fatwa, inputs=[gr.Textbox(label="text", lines=3)], outputs="json")
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
# # iface = gr.Interface(
|
| 104 |
+
# # fn=predict,
|
| 105 |
+
# # inputs=[gr.Textbox(label="text", lines=3)],
|
| 106 |
+
# # outputs='text',
|
| 107 |
+
# # title=title,
|
| 108 |
+
# # )
|
| 109 |
+
|
| 110 |
+
# iface.launch()
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
|
| 114 |
import torch
|
| 115 |
import pandas as pd
|
| 116 |
from sentence_transformers import SentenceTransformer, util
|
|
|
|
| 122 |
embeddings = torch.load("embeddings1.pt")
|
| 123 |
embeddings2 = torch.load("embeddings2.pt")
|
| 124 |
|
| 125 |
+
def search_fatwa(query):
|
| 126 |
+
# Handle both string and list inputs
|
| 127 |
+
if isinstance(query, list):
|
| 128 |
+
query = query[0] if query else ""
|
| 129 |
+
|
| 130 |
+
if not query or query.strip() == "":
|
| 131 |
+
return "No query provided"
|
| 132 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
query_embedding = model.encode(query, convert_to_tensor=True)
|
| 134 |
top_idx = int(util.pytorch_cos_sim(query_embedding, embeddings)[0].argmax())
|
| 135 |
top_idx2 = int(util.pytorch_cos_sim(query_embedding, embeddings2)[0].argmax())
|
| 136 |
+
|
| 137 |
+
# Return formatted text (like your working first app)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
result = f"""Question 1: {df.iloc[top_idx]["question"]}
|
| 139 |
+
Link 1: {df.iloc[top_idx]["link"]}
|
| 140 |
+
|
| 141 |
+
Question 2: {df2.iloc[top_idx2]["question"]}
|
| 142 |
+
Link 2: {df2.iloc[top_idx2]["link"]}"""
|
| 143 |
+
|
| 144 |
return result
|
| 145 |
|
| 146 |
+
# Use the same structure as your working first app
|
| 147 |
iface = gr.Interface(
|
| 148 |
fn=search_fatwa,
|
| 149 |
+
inputs=[gr.Textbox(label="text", lines=3)],
|
| 150 |
+
outputs='text', # Changed to 'text' like your working app
|
| 151 |
+
title="Search CSV"
|
| 152 |
)
|
| 153 |
|
| 154 |
+
# Enable API access for curl requests
|
| 155 |
+
iface.launch(share=False, show_api=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|