Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,34 +2,45 @@ import gradio as gr
|
|
| 2 |
import pandas as pd
|
| 3 |
from sentence_transformers import SentenceTransformer, util
|
| 4 |
|
| 5 |
-
# Load
|
| 6 |
df = pd.read_excel("IslamWeb_output.xlsx")
|
| 7 |
df2 = pd.read_excel("JordanFatwas_all.xlsx")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
model = SentenceTransformer("paraphrase-multilingual-MiniLM-L12-v2")
|
| 9 |
-
embeddings = model.encode(df["question"].tolist(), convert_to_tensor=True)
|
| 10 |
-
embeddings2 = model.encode(df2["question"].tolist(), convert_to_tensor=True)
|
| 11 |
|
|
|
|
| 12 |
def search_fatwa(query):
|
| 13 |
query_embedding = model.encode(query, convert_to_tensor=True)
|
|
|
|
| 14 |
scores = util.pytorch_cos_sim(query_embedding, embeddings)[0]
|
| 15 |
top_idx = int(scores.argmax())
|
| 16 |
-
|
| 17 |
scores2 = util.pytorch_cos_sim(query_embedding, embeddings2)[0]
|
| 18 |
top_idx2 = int(scores2.argmax())
|
|
|
|
| 19 |
return {
|
| 20 |
"question1": df.iloc[top_idx]["question"],
|
| 21 |
"link1": df.iloc[top_idx]["link"],
|
| 22 |
"question2": df2.iloc[top_idx2]["question"],
|
| 23 |
"link2": df2.iloc[top_idx2]["link"],
|
| 24 |
}
|
| 25 |
-
|
|
|
|
| 26 |
iface = gr.Interface(
|
| 27 |
fn=search_fatwa,
|
| 28 |
inputs="text",
|
| 29 |
outputs="json",
|
| 30 |
allow_flagging="never",
|
| 31 |
-
title="Fatwa Search",
|
| 32 |
-
description="
|
| 33 |
)
|
| 34 |
|
| 35 |
iface.launch()
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
from sentence_transformers import SentenceTransformer, util
|
| 4 |
|
| 5 |
+
# Load files
|
| 6 |
df = pd.read_excel("IslamWeb_output.xlsx")
|
| 7 |
df2 = pd.read_excel("JordanFatwas_all.xlsx")
|
| 8 |
+
|
| 9 |
+
# Validate
|
| 10 |
+
for d, name in [(df, "IslamWeb"), (df2, "JordanFatwas")]:
|
| 11 |
+
if not {"question", "link"}.issubset(d.columns):
|
| 12 |
+
raise ValueError(f"❌ Missing required columns in {name}")
|
| 13 |
+
|
| 14 |
+
# Load model + encode
|
| 15 |
model = SentenceTransformer("paraphrase-multilingual-MiniLM-L12-v2")
|
| 16 |
+
embeddings = model.encode(df["question"].fillna('').tolist(), convert_to_tensor=True)
|
| 17 |
+
embeddings2 = model.encode(df2["question"].fillna('').tolist(), convert_to_tensor=True)
|
| 18 |
|
| 19 |
+
# Define function
|
| 20 |
def search_fatwa(query):
|
| 21 |
query_embedding = model.encode(query, convert_to_tensor=True)
|
| 22 |
+
|
| 23 |
scores = util.pytorch_cos_sim(query_embedding, embeddings)[0]
|
| 24 |
top_idx = int(scores.argmax())
|
| 25 |
+
|
| 26 |
scores2 = util.pytorch_cos_sim(query_embedding, embeddings2)[0]
|
| 27 |
top_idx2 = int(scores2.argmax())
|
| 28 |
+
|
| 29 |
return {
|
| 30 |
"question1": df.iloc[top_idx]["question"],
|
| 31 |
"link1": df.iloc[top_idx]["link"],
|
| 32 |
"question2": df2.iloc[top_idx2]["question"],
|
| 33 |
"link2": df2.iloc[top_idx2]["link"],
|
| 34 |
}
|
| 35 |
+
|
| 36 |
+
# Interface
|
| 37 |
iface = gr.Interface(
|
| 38 |
fn=search_fatwa,
|
| 39 |
inputs="text",
|
| 40 |
outputs="json",
|
| 41 |
allow_flagging="never",
|
| 42 |
+
title="Fatwa Search (Dual Source)",
|
| 43 |
+
description="Get the most relevant fatwas from both datasets"
|
| 44 |
)
|
| 45 |
|
| 46 |
iface.launch()
|