Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,19 +2,9 @@ import evaluate
|
|
| 2 |
from evaluate.utils import launch_gradio_widget
|
| 3 |
import gradio as gr
|
| 4 |
from transformers import AutoModelForSequenceClassification, pipeline, RobertaForSequenceClassification, RobertaTokenizer, AutoTokenizer
|
| 5 |
-
import tempfile
|
| 6 |
|
| 7 |
-
tmp = tempfile.NamedTemporaryFile()
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
# Define the list of available models
|
| 11 |
-
available_models = {
|
| 12 |
-
"mskov/roberta-base-toxicity": "Roberta Finetuned Model"
|
| 13 |
-
}
|
| 14 |
-
|
| 15 |
-
|
| 16 |
# Create a Gradio interface with audio file and text inputs
|
| 17 |
-
def classify_toxicity(audio_file, text_input
|
| 18 |
# Transcribe the audio file using Whisper ASR
|
| 19 |
if audio_file != None:
|
| 20 |
whisper_module = evaluate.load("whisper")
|
|
@@ -26,7 +16,7 @@ def classify_toxicity(audio_file, text_input, selected_model):
|
|
| 26 |
transcribed_text = text_input
|
| 27 |
|
| 28 |
# Load the selected toxicity classification model
|
| 29 |
-
toxicity_module = evaluate.load("toxicity",
|
| 30 |
#toxicity_module = evaluate.load("toxicity", 'DaNLP/da-electra-hatespeech-detection', module_type="measurement")
|
| 31 |
|
| 32 |
toxicity_results = toxicity_module.compute(predictions=[transcribed_text])
|
|
@@ -39,11 +29,10 @@ def classify_toxicity(audio_file, text_input, selected_model):
|
|
| 39 |
with gr.Blocks() as iface:
|
| 40 |
with gr.Column():
|
| 41 |
aud_input = gr.Audio(source="upload", type="filepath", label="Upload Audio File")
|
| 42 |
-
with gr.Row():
|
| 43 |
text = gr.Textbox(label="Enter Text", placeholder="Enter text here...")
|
| 44 |
submit_btn = gr.Button(label="Submit")
|
| 45 |
-
|
| 46 |
out_text = gr.Textbox()
|
| 47 |
-
submit_btn.click(fn=classify_toxicity, inputs=[aud_input, text
|
| 48 |
|
| 49 |
iface.launch()
|
|
|
|
| 2 |
from evaluate.utils import launch_gradio_widget
|
| 3 |
import gradio as gr
|
| 4 |
from transformers import AutoModelForSequenceClassification, pipeline, RobertaForSequenceClassification, RobertaTokenizer, AutoTokenizer
|
|
|
|
| 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
# Create a Gradio interface with audio file and text inputs
|
| 7 |
+
def classify_toxicity(audio_file, text_input):
|
| 8 |
# Transcribe the audio file using Whisper ASR
|
| 9 |
if audio_file != None:
|
| 10 |
whisper_module = evaluate.load("whisper")
|
|
|
|
| 16 |
transcribed_text = text_input
|
| 17 |
|
| 18 |
# Load the selected toxicity classification model
|
| 19 |
+
toxicity_module = evaluate.load("toxicity", "mskov/roberta-base-toxicity")
|
| 20 |
#toxicity_module = evaluate.load("toxicity", 'DaNLP/da-electra-hatespeech-detection', module_type="measurement")
|
| 21 |
|
| 22 |
toxicity_results = toxicity_module.compute(predictions=[transcribed_text])
|
|
|
|
| 29 |
with gr.Blocks() as iface:
|
| 30 |
with gr.Column():
|
| 31 |
aud_input = gr.Audio(source="upload", type="filepath", label="Upload Audio File")
|
|
|
|
| 32 |
text = gr.Textbox(label="Enter Text", placeholder="Enter text here...")
|
| 33 |
submit_btn = gr.Button(label="Submit")
|
| 34 |
+
with g.Column():
|
| 35 |
out_text = gr.Textbox()
|
| 36 |
+
submit_btn.click(fn=classify_toxicity, inputs=[aud_input, text], outputs=out_text)
|
| 37 |
|
| 38 |
iface.launch()
|