File size: 5,974 Bytes
1315cad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
from __future__ import annotations

from dataclasses import dataclass
from typing import Callable, List, Optional, Sequence, TYPE_CHECKING

import numpy as np
import torch

from ..generation import PrefixConfig
from .audio_io import encode_audio_tokens, load_mono_audio
from .state_machine import Entry

if TYPE_CHECKING:  # pragma: no cover
    from .context import RuntimeContext


@dataclass
class WhisperWord:
    text: str
    start: float
    end: float


@dataclass
class PrefixPlan:
    entries: List[Entry]
    new_word_steps: List[int]
    aligned_tokens: torch.Tensor
    aligned_frames: int


def build_prefix_plan(
    runtime: "RuntimeContext",
    prefix: Optional[PrefixConfig],
    *,
    transcribe_fn: Optional[Callable[[str, torch.device], List[WhisperWord]]] = None,
    load_audio_fn: Optional[Callable[[str, int], np.ndarray]] = None,
    encode_fn: Optional[Callable[[np.ndarray], torch.Tensor]] = None,
) -> Optional[PrefixPlan]:
    if prefix is None:
        return None
    if not prefix.speaker_1:
        if prefix.speaker_2:
            raise ValueError("speaker_2 requires speaker_1 to be provided")
        return None

    transcribe = transcribe_fn or (lambda path, device: transcribe_words(path, device))
    load_audio = load_audio_fn or (lambda path, sr: load_mono_audio(path, sr))
    encode_audio = encode_fn or (lambda audio: encode_audio_tokens(runtime.mimi, audio))

    entries1, steps1, tokens1 = _process_prefix_audio(
        runtime=runtime,
        audio_path=prefix.speaker_1,
        speaker_token=runtime.constants.spk1,
        transcribe=transcribe,
        load_audio=load_audio,
        encode_audio=encode_audio,
    )
    offset = 3  # Match legacy BOS/PAD offset
    entries = list(entries1)
    new_word_steps = [step + offset for step in steps1]
    audio_tokens = tokens1.to(runtime.device)

    if prefix.speaker_2:
        entries2, steps2, tokens2 = _process_prefix_audio(
            runtime=runtime,
            audio_path=prefix.speaker_2,
            speaker_token=runtime.constants.spk2,
            transcribe=transcribe,
            load_audio=load_audio,
            encode_audio=encode_audio,
        )
        spk1_frames = audio_tokens.shape[-1]
        new_word_steps.extend(step + spk1_frames for step in steps2)
        entries.extend(entries2)
        audio_tokens = torch.cat([audio_tokens, tokens2.to(runtime.device)], dim=1)

    return PrefixPlan(
        entries=entries,
        new_word_steps=new_word_steps,
        aligned_tokens=audio_tokens,
        aligned_frames=audio_tokens.shape[-1],
    )


def _process_prefix_audio(
    runtime: "RuntimeContext",
    audio_path: str,
    speaker_token: int,
    *,
    transcribe: Callable[[str, torch.device], List[WhisperWord]],
    load_audio: Callable[[str, int], np.ndarray],
    encode_audio: Callable[[np.ndarray], torch.Tensor],
) -> tuple[List[Entry], List[int], torch.Tensor]:
    words = transcribe(audio_path, runtime.device)
    entries, steps = words_to_entries(
        words=words,
        tokenizer=runtime.tokenizer,
        speaker_token=speaker_token,
        frame_rate=runtime.frame_rate,
    )
    audio = load_audio(audio_path, runtime.mimi.sample_rate)
    tokens = encode_audio(audio)
    return entries, steps, tokens


def transcribe_words(
    audio_path: str,
    device: torch.device,
    language: Optional[str] = None,
) -> List[WhisperWord]:
    import whisper_timestamped as wts  # Imported lazily

    model = wts.load_model("openai/whisper-large-v3", device=str(device))
    result = wts.transcribe(model, audio_path, language=language)

    words: List[WhisperWord] = []
    for segment in result.get("segments", []):
        for word in segment.get("words", []):
            text = (word.get("text") or word.get("word") or "").strip()
            if not text:
                continue
            words.append(
                WhisperWord(
                    text=text,
                    start=float(word.get("start", 0.0)),
                    end=float(word.get("end", 0.0)),
                )
            )
    return words


def words_to_entries(
    *,
    words: Sequence[WhisperWord],
    tokenizer,
    speaker_token: int,
    frame_rate: float,
) -> tuple[List[Entry], List[int]]:
    entries: List[Entry] = []
    new_word_steps: List[int] = []
    if not words:
        return entries, new_word_steps

    convert = getattr(tokenizer, "convert_tokens_to_ids", None)
    speaker_prefix: Optional[str] = None
    if callable(convert):
        s1_id = convert("[S1]")
        s2_id = convert("[S2]")
        if speaker_token == s1_id:
            speaker_prefix = "[S1]"
        elif speaker_token == s2_id:
            speaker_prefix = "[S2]"
    pending_prefix: Optional[str] = speaker_prefix
    current_pos = 0

    for idx, word in enumerate(words):
        tokens = _encode_word(word.text, tokenizer, pending_prefix)
        pending_prefix = None
        start_frame = max(current_pos + 1, int(round(word.start * frame_rate)))
        end_frame = start_frame + len(tokens)
        new_word_steps.append(start_frame - 1)

        if idx < len(words) - 1:
            next_start = int(round(words[idx + 1].start * frame_rate))
            next_word_start = max(end_frame + 1, next_start)
        else:
            end_time = int(round(words[-1].end * frame_rate))
            next_word_start = max(end_frame + 1, end_time)

        padding = max(0, next_word_start - start_frame - 1)
        entries.append(Entry(tokens=tokens, text=word.text, padding=padding))
        current_pos = end_frame

    return entries, new_word_steps


def _encode_word(text: str, tokenizer, prefix: Optional[str]) -> List[int]:
    if prefix:
        return tokenizer.encode(f"{prefix} {text}", add_special_tokens=False)
    return tokenizer.encode(text, add_special_tokens=False)


__all__ = [
    "PrefixPlan",
    "WhisperWord",
    "build_prefix_plan",
    "transcribe_words",
    "words_to_entries",
]