Spaces:
Sleeping
Sleeping
File size: 9,977 Bytes
3f5ac2a 43454fc 054efa5 3f5ac2a 43454fc 054efa5 b8152ef 054efa5 b8152ef 054efa5 43454fc 3f5ac2a 43454fc 3f5ac2a 43454fc 054efa5 b8152ef 054efa5 43454fc 3f5ac2a 054efa5 3f5ac2a 9441bd6 3f5ac2a 9441bd6 3f5ac2a 9441bd6 3f5ac2a 9441bd6 5e98324 43454fc 9441bd6 43454fc 054efa5 5e98324 1d5499e 5e98324 43454fc 9441bd6 054efa5 9441bd6 5e98324 054efa5 43454fc 054efa5 1d5499e 43454fc 054efa5 43454fc 1d5499e 43454fc 054efa5 43454fc 054efa5 43454fc 9441bd6 43454fc 9441bd6 1d5499e 5e98324 43454fc 1d5499e 43454fc 1d5499e 5e98324 43454fc 1d5499e 43454fc 5e98324 43454fc 5e98324 43454fc b8152ef 9441bd6 054efa5 1d5499e 43454fc 1d5499e 43454fc 1d5499e 43454fc 1d5499e 43454fc 1d5499e 43454fc 3f5ac2a 43454fc 1d5499e 9441bd6 054efa5 9441bd6 054efa5 43454fc 9441bd6 1d5499e 5e98324 43454fc 1d5499e 43454fc b8152ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
import os, json
from typing import List, Dict, Any, Optional
from PIL import Image
import torch
import gradio as gr
import spaces
from huggingface_hub import snapshot_download
from diffusers import (
StableDiffusionXLPipeline,
StableDiffusionPipeline,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
DDIMScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
# Config (set in Space Secrets if private)
MODEL_REPO_ID = os.getenv("MODEL_REPO_ID", "DB2169/CyberPony_Lora").strip()
CHECKPOINT_FILENAME = os.getenv("CHECKPOINT_FILENAME", "SAFETENSORS_FILENAME.safetensors").strip()
HF_TOKEN = os.getenv("HF_TOKEN", None)
DO_WARMUP = os.getenv("WARMUP", "1") == "1" # set WARMUP=0 to skip the first warmup call
# Optional override: JSON string for LoRA manifest (same shape as loras.json)
LORAS_JSON = os.getenv("LORAS_JSON", "").strip()
# Where snapshot_download caches the repo in the container
REPO_DIR = "/home/user/model"
SCHEDULERS = {
"default": None,
"euler_a": EulerAncestralDiscreteScheduler,
"euler": EulerDiscreteScheduler,
"ddim": DDIMScheduler,
"lms": LMSDiscreteScheduler,
"pndm": PNDMScheduler,
"dpmpp_2m": DPMSolverMultistepScheduler,
}
# Globals populated at startup
pipe = None
IS_SDXL = True
LORA_MANIFEST: Dict[str, Dict[str, str]] = {}
INIT_ERROR: Optional[str] = None
def load_lora_manifest(repo_dir: str) -> Dict[str, Dict[str, str]]:
"""Manifest load order:
1) Environment variable LORAS_JSON (if provided)
2) loras.json inside the downloaded model repo
3) loras.json at the Space root (next to app.py)
4) Built-in fallback with MoriiMee_Gothic you provided
"""
# 1) From env JSON
if LORAS_JSON:
try:
parsed = json.loads(LORAS_JSON)
if isinstance(parsed, dict):
return parsed
except Exception as e:
print(f"[WARN] Failed to parse LORAS_JSON: {e}")
# 2) From repo
repo_manifest = os.path.join(repo_dir, "loras.json")
if os.path.exists(repo_manifest):
try:
with open(repo_manifest, "r", encoding="utf-8") as f:
parsed = json.load(f)
if isinstance(parsed, dict):
return parsed
except Exception as e:
print(f"[WARN] Failed to parse repo loras.json: {e}")
# 3) From Space root
local_manifest = os.path.join(os.getcwd(), "loras.json")
if os.path.exists(local_manifest):
try:
with open(local_manifest, "r", encoding="utf-8") as f:
parsed = json.load(f)
if isinstance(parsed, dict):
return parsed
except Exception as e:
print(f"[WARN] Failed to parse local loras.json: {e}")
# 4) Built-in fallback: your MoriiMee Gothic LoRA
print("[INFO] Using built-in LoRA fallback manifest.")
return {
"MoriiMee_Gothic": {
"repo": "LyliaEngine/MoriiMee_Gothic_Niji_Style_Illustrious_r1",
"weight_name": "MoriiMee_Gothic_Niji_Style_Illustrious_r1.safetensors"
}
}
def bootstrap_model():
"""
Downloads MODEL_REPO_ID into REPO_DIR and loads the single-file checkpoint,
keeping weights on CPU; ZeroGPU attaches GPU only inside @spaces.GPU calls.
"""
global pipe, IS_SDXL, LORA_MANIFEST, INIT_ERROR
INIT_ERROR = None
if not MODEL_REPO_ID or not CHECKPOINT_FILENAME:
INIT_ERROR = "Missing MODEL_REPO_ID or CHECKPOINT_FILENAME."
print(f"[ERROR] {INIT_ERROR}")
return
try:
local_dir = snapshot_download(
repo_id=MODEL_REPO_ID,
token=HF_TOKEN,
local_dir=REPO_DIR,
ignore_patterns=["*.md"],
)
except Exception as e:
INIT_ERROR = f"Failed to download repo {MODEL_REPO_ID}: {e}"
print(f"[ERROR] {INIT_ERROR}")
return
ckpt_path = os.path.join(local_dir, CHECKPOINT_FILENAME)
if not os.path.exists(ckpt_path):
INIT_ERROR = f"Checkpoint not found at {ckpt_path}. Check CHECKPOINT_FILENAME."
print(f"[ERROR] {INIT_ERROR}")
return
try:
# Attempt SDXL first (text_encoder_2 present)
_pipe = StableDiffusionXLPipeline.from_single_file(
ckpt_path, torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False
)
sdxl = True
except Exception:
try:
_pipe = StableDiffusionPipeline.from_single_file(
ckpt_path, torch_dtype=torch.float16, use_safetensors=True
)
sdxl = False
except Exception as e:
INIT_ERROR = f"Failed to load pipeline: {e}"
print(f"[ERROR] {INIT_ERROR}")
return
if hasattr(_pipe, "enable_attention_slicing"):
_pipe.enable_attention_slicing("max")
if hasattr(_pipe, "enable_vae_slicing"):
_pipe.enable_vae_slicing()
if hasattr(_pipe, "set_progress_bar_config"):
_pipe.set_progress_bar_config(disable=True)
manifest = load_lora_manifest(local_dir)
print(f"[INFO] LoRAs available: {list(manifest.keys())}")
# Publish
pipe = _pipe
IS_SDXL = sdxl
LORA_MANIFEST = manifest
def apply_loras(selected: List[str], scale: float, repo_dir: str):
if not selected or scale <= 0:
return
for name in selected:
meta = LORA_MANIFEST.get(name)
if not meta:
print(f"[WARN] Requested LoRA '{name}' not in manifest.")
continue
try:
if "path" in meta:
pipe.load_lora_weights(os.path.join(repo_dir, meta["path"]), adapter_name=name)
else:
pipe.load_lora_weights(meta.get("repo", ""), weight_name=meta.get("weight_name"), adapter_name=name)
print(f"[INFO] Loaded LoRA: {name}")
except Exception as e:
print(f"[WARN] LoRA load failed for {name}: {e}")
try:
pipe.set_adapters(selected, adapter_weights=[float(scale)] * len(selected))
print(f"[INFO] Activated LoRAs: {selected} at scale {scale}")
except Exception as e:
print(f"[WARN] set_adapters failed: {e}")
@spaces.GPU
def txt2img(
prompt: str,
negative: str,
width: int,
height: int,
steps: int,
guidance: float,
images: int,
seed: Optional[int],
scheduler: str,
loras: List[str],
lora_scale: float,
fuse_lora: bool,
):
if pipe is None:
raise RuntimeError(f"Model not initialized. {INIT_ERROR or 'Check Space secrets and logs.'}")
local_device = "cuda" if torch.cuda.is_available() else "cpu"
pipe.to(local_device)
if scheduler in SCHEDULERS and SCHEDULERS[scheduler] is not None:
try:
pipe.scheduler = SCHEDULERS[scheduler].from_config(pipe.scheduler.config)
except Exception as e:
print(f"[WARN] Scheduler switch failed: {e}")
apply_loras(loras, lora_scale, REPO_DIR)
if fuse_lora and loras:
try:
pipe.fuse_lora(lora_scale=float(lora_scale))
except Exception as e:
print(f"[WARN] fuse_lora failed: {e}")
generator = torch.Generator(device=local_device).manual_seed(int(seed)) if seed not in (None, "") else None
kwargs: Dict[str, Any] = dict(
prompt=prompt or "",
negative_prompt=negative or None,
width=int(width),
height=int(height),
num_inference_steps=int(steps),
guidance_scale=float(guidance),
num_images_per_prompt=int(images),
generator=generator,
)
with torch.inference_mode():
out = pipe(**kwargs)
return out.images
def warmup():
try:
_ = txt2img("warmup", "", 512, 512, 4, 4.0, 1, 1234, "default", [], 0.0, False)
except Exception as e:
print(f"[WARN] Warmup failed: {e}")
# UI
with gr.Blocks(title="SDXL Space (ZeroGPU, single-file, LoRA-ready)") as demo:
status = gr.Markdown("")
with gr.Row():
prompt = gr.Textbox(label="Prompt", lines=3)
negative = gr.Textbox(label="Negative Prompt", lines=3)
with gr.Row():
width = gr.Slider(256, 1536, 1024, step=64, label="Width")
height = gr.Slider(256, 1536, 1024, step=64, label="Height")
with gr.Row():
steps = gr.Slider(5, 80, 30, step=1, label="Steps")
guidance = gr.Slider(0.0, 20.0, 6.5, step=0.1, label="Guidance")
images = gr.Slider(1, 4, 1, step=1, label="Images")
with gr.Row():
seed = gr.Number(value=None, precision=0, label="Seed (blank=random)")
scheduler = gr.Dropdown(list(SCHEDULERS.keys()), value="dpmpp_2m", label="Scheduler")
lora_names = gr.CheckboxGroup(choices=[], label="LoRAs (from loras.json; select any)")
lora_scale = gr.Slider(0.0, 1.5, 0.7, step=0.05, label="LoRA scale")
fuse = gr.Checkbox(label="Fuse LoRA (faster after load)")
btn = gr.Button("Generate", variant="primary", interactive=False)
gallery = gr.Gallery(columns=4, height=420)
def _startup():
bootstrap_model()
if INIT_ERROR:
return gr.update(value=f"❌ Init failed: {INIT_ERROR}"), gr.update(choices=[]), gr.update(interactive=False)
msg = f"✅ Model loaded from {MODEL_REPO_ID} ({'SDXL' if IS_SDXL else 'SD'})"
# Populate LoRA choices (manifest could come from repo, Space file, or built-in fallback)
return gr.update(value=msg), gr.update(choices=list(LORA_MANIFEST.keys())), gr.update(interactive=True)
demo.load(_startup, outputs=[status, lora_names, btn])
if DO_WARMUP:
demo.load(lambda: warmup(), inputs=None, outputs=None)
btn.click(
txt2img,
inputs=[prompt, negative, width, height, steps, guidance, images, seed, scheduler, lora_names, lora_scale, fuse],
outputs=[gallery],
api_name="txt2img",
concurrency_limit=1,
concurrency_id="gpu_queue",
)
demo.queue(max_size=32, default_concurrency_limit=1).launch()
|