Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -11,25 +11,21 @@ import io
|
|
| 11 |
import base64
|
| 12 |
import plotly.graph_objects as go
|
| 13 |
|
| 14 |
-
# Global instances
|
| 15 |
-
data_processor = DataProcessor()
|
| 16 |
-
sentiment_analyzer = SentimentAnalyzer()
|
| 17 |
-
model_handler = ModelHandler()
|
| 18 |
-
trading_logic = TradingLogic()
|
| 19 |
-
|
| 20 |
-
# Asset mapping
|
| 21 |
asset_map = {
|
| 22 |
"Gold Futures (GC=F)": "GC=F",
|
| 23 |
"Bitcoin USD (BTC-USD)": "BTC-USD"
|
| 24 |
}
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
def create_chart_analysis(interval, asset_name):
|
| 27 |
-
"""Create chart with technical indicators using mplfinance"""
|
| 28 |
try:
|
| 29 |
ticker = asset_map[asset_name]
|
| 30 |
df = data_processor.get_asset_data(ticker, interval)
|
| 31 |
if df.empty:
|
| 32 |
-
# Return error plot instead of string
|
| 33 |
fig, ax = plt.subplots(figsize=(12, 8), facecolor='white')
|
| 34 |
fig.patch.set_facecolor('white')
|
| 35 |
ax.text(0.5, 0.5, f'No data available for {asset_name}\nPlease try a different interval',
|
|
@@ -40,45 +36,35 @@ def create_chart_analysis(interval, asset_name):
|
|
| 40 |
pred_fig.patch.set_facecolor('white')
|
| 41 |
return fig, {}, pred_fig
|
| 42 |
|
| 43 |
-
# Calculate indicators
|
| 44 |
df = data_processor.calculate_indicators(df)
|
| 45 |
|
| 46 |
-
# Create main candlestick chart with mplfinance
|
| 47 |
-
# Prepare additional plots for indicators
|
| 48 |
ap = []
|
| 49 |
|
| 50 |
-
# Add moving averages (last 100 data points)
|
| 51 |
if 'SMA_20' in df.columns:
|
| 52 |
ap.append(mpf.make_addplot(df['SMA_20'].iloc[-100:], color='#FFA500', width=1.5, label='SMA 20'))
|
| 53 |
if 'SMA_50' in df.columns:
|
| 54 |
ap.append(mpf.make_addplot(df['SMA_50'].iloc[-100:], color='#FF4500', width=1.5, label='SMA 50'))
|
| 55 |
|
| 56 |
-
# Add Bollinger Bands
|
| 57 |
if 'BB_upper' in df.columns and 'BB_lower' in df.columns:
|
| 58 |
ap.append(mpf.make_addplot(df['BB_upper'].iloc[-100:], color='#4169E1', width=1, linestyle='dashed', label='BB Upper'))
|
| 59 |
ap.append(mpf.make_addplot(df['BB_lower'].iloc[-100:], color='#4169E1', width=1, linestyle='dashed', label='BB Lower'))
|
| 60 |
|
| 61 |
-
# Create figure
|
| 62 |
try:
|
| 63 |
fig, axes = mpf.plot(
|
| 64 |
-
df[-100:],
|
| 65 |
type='candle',
|
| 66 |
style='yahoo',
|
| 67 |
title=f'{asset_name} - {interval}',
|
| 68 |
ylabel='Price (USD)',
|
| 69 |
volume=True,
|
| 70 |
addplot=ap,
|
| 71 |
-
figsize=(15, 9),
|
| 72 |
returnfig=True,
|
| 73 |
warn_too_much_data=200,
|
| 74 |
-
|
|
|
|
| 75 |
)
|
| 76 |
|
| 77 |
-
# Perbaikan untuk mencegah pemotongan label sumbu Y di Gradio
|
| 78 |
-
if fig:
|
| 79 |
-
plt.subplots_adjust(right=0.95) # Tambahkan margin kanan
|
| 80 |
-
|
| 81 |
-
# Adjust layout
|
| 82 |
fig.patch.set_facecolor('white')
|
| 83 |
if axes:
|
| 84 |
axes[0].set_facecolor('white')
|
|
@@ -92,24 +78,19 @@ def create_chart_analysis(interval, asset_name):
|
|
| 92 |
axes.set_title('Plot Generation Error', color='black')
|
| 93 |
axes.axis('off')
|
| 94 |
|
| 95 |
-
# Prepare data for Chronos
|
| 96 |
prepared_data = data_processor.prepare_for_chronos(df)
|
| 97 |
|
| 98 |
-
# Generate predictions
|
| 99 |
predictions = model_handler.predict(prepared_data, horizon=10)
|
| 100 |
current_price = df['Close'].iloc[-1]
|
| 101 |
|
| 102 |
-
# Get signal
|
| 103 |
signal, confidence = trading_logic.generate_signal(
|
| 104 |
predictions, current_price, df
|
| 105 |
)
|
| 106 |
|
| 107 |
-
# Calculate TP/SL
|
| 108 |
tp, sl = trading_logic.calculate_tp_sl(
|
| 109 |
current_price, df['ATR'].iloc[-1] if 'ATR' in df.columns else 10, signal
|
| 110 |
)
|
| 111 |
|
| 112 |
-
# Create metrics display
|
| 113 |
metrics = {
|
| 114 |
"Current Price": f"${current_price:,.2f}",
|
| 115 |
"Signal": signal.upper(),
|
|
@@ -121,16 +102,13 @@ def create_chart_analysis(interval, asset_name):
|
|
| 121 |
"Volume": f"{df['Volume'].iloc[-1]:,.0f}" if 'Volume' in df.columns else "N/A"
|
| 122 |
}
|
| 123 |
|
| 124 |
-
# Create prediction chart using matplotlib
|
| 125 |
pred_fig, ax = plt.subplots(figsize=(10, 4), facecolor='white')
|
| 126 |
pred_fig.patch.set_facecolor('white')
|
| 127 |
|
| 128 |
-
# Plot historical prices (last 30 points)
|
| 129 |
hist_data = df['Close'].iloc[-30:]
|
| 130 |
hist_dates = df.index[-30:]
|
| 131 |
ax.plot(hist_dates, hist_data, color='#4169E1', linewidth=2, label='Historical')
|
| 132 |
|
| 133 |
-
# Plot predictions
|
| 134 |
if predictions.any() and len(predictions) > 0:
|
| 135 |
future_dates = pd.date_range(
|
| 136 |
start=df.index[-1], periods=len(predictions), freq='D'
|
|
@@ -138,7 +116,6 @@ def create_chart_analysis(interval, asset_name):
|
|
| 138 |
ax.plot(future_dates, predictions, color='#FF6600', linewidth=2,
|
| 139 |
marker='o', markersize=4, label='Predictions')
|
| 140 |
|
| 141 |
-
# Connect historical to prediction
|
| 142 |
ax.plot([hist_dates[-1], future_dates[0]],
|
| 143 |
[hist_data.iloc[-1], predictions[0]],
|
| 144 |
color='#FF6600', linewidth=1, linestyle='--')
|
|
@@ -153,7 +130,6 @@ def create_chart_analysis(interval, asset_name):
|
|
| 153 |
return fig, metrics, pred_fig
|
| 154 |
|
| 155 |
except Exception as e:
|
| 156 |
-
# Return error plot instead of string
|
| 157 |
fig, ax = plt.subplots(figsize=(12, 8), facecolor='white')
|
| 158 |
fig.patch.set_facecolor('white')
|
| 159 |
ax.text(0.5, 0.5, f'Error: {str(e)}', ha='center', va='center',
|
|
@@ -166,14 +142,10 @@ def create_chart_analysis(interval, asset_name):
|
|
| 166 |
return fig, {}, pred_fig
|
| 167 |
|
| 168 |
def analyze_sentiment(asset_name):
|
| 169 |
-
"""Analyze market sentiment for selected asset"""
|
| 170 |
try:
|
| 171 |
ticker = asset_map[asset_name]
|
| 172 |
-
# FIX: Menggunakan fungsi yang benar dari sentiment_analyzer.py
|
| 173 |
sentiment_score, news_summary = sentiment_analyzer.analyze_market_sentiment(ticker)
|
| 174 |
|
| 175 |
-
# --- Implementasi Plotly Gauge (sesuai referensi pengguna) ---
|
| 176 |
-
|
| 177 |
fig = go.Figure(go.Indicator(
|
| 178 |
mode="gauge+number+delta",
|
| 179 |
value=sentiment_score,
|
|
@@ -184,9 +156,9 @@ def analyze_sentiment(asset_name):
|
|
| 184 |
'axis': {'range': [-1, 1]},
|
| 185 |
'bar': {'color': "#FFD700"},
|
| 186 |
'steps': [
|
| 187 |
-
{'range': [-1, -0.5], 'color': "rgba(255,0,0,0.5)"},
|
| 188 |
-
{'range': [-0.5, 0.5], 'color': "rgba(100,100,100,0.3)"},
|
| 189 |
-
{'range': [0.5, 1], 'color': "rgba(0,255,0,0.5)"}
|
| 190 |
],
|
| 191 |
'threshold': {
|
| 192 |
'line': {'color': "black", 'width': 4},
|
|
@@ -207,7 +179,6 @@ def analyze_sentiment(asset_name):
|
|
| 207 |
return fig, news_summary
|
| 208 |
|
| 209 |
except Exception as e:
|
| 210 |
-
# Return error plot (menggunakan Matplotlib untuk error fallback)
|
| 211 |
fig, ax = plt.subplots(figsize=(6, 4), facecolor='white')
|
| 212 |
fig.patch.set_facecolor('white')
|
| 213 |
ax.text(0.5, 0.5, f'Sentiment Error: {str(e)}', ha='center', va='center',
|
|
@@ -216,25 +187,21 @@ def analyze_sentiment(asset_name):
|
|
| 216 |
return fig, f"<p>Error analyzing sentiment: {str(e)}</p>"
|
| 217 |
|
| 218 |
def get_fundamentals(asset_name):
|
| 219 |
-
"""Get fundamental analysis data"""
|
| 220 |
try:
|
| 221 |
ticker = asset_map[asset_name]
|
| 222 |
fundamentals = data_processor.get_fundamental_data(ticker)
|
| 223 |
|
| 224 |
-
# Create fundamentals table
|
| 225 |
table_data = []
|
| 226 |
for key, value in fundamentals.items():
|
| 227 |
table_data.append([key, value])
|
| 228 |
|
| 229 |
df = pd.DataFrame(table_data, columns=['Metric', 'Value'])
|
| 230 |
|
| 231 |
-
# Create fundamentals gauge chart
|
| 232 |
fig, ax = plt.subplots(figsize=(6, 4), facecolor='white')
|
| 233 |
fig.patch.set_facecolor('white')
|
| 234 |
|
| 235 |
strength_index = fundamentals.get('Strength Index', 50)
|
| 236 |
|
| 237 |
-
# Create horizontal bar gauge
|
| 238 |
ax.barh([0], [strength_index], height=0.3, color='gold', alpha=0.7)
|
| 239 |
ax.set_xlim(0, 100)
|
| 240 |
ax.set_ylim(-0.5, 0.5)
|
|
@@ -248,7 +215,6 @@ def get_fundamentals(asset_name):
|
|
| 248 |
return fig, df
|
| 249 |
|
| 250 |
except Exception as e:
|
| 251 |
-
# Return error plot
|
| 252 |
fig, ax = plt.subplots(figsize=(6, 4), facecolor='white')
|
| 253 |
fig.patch.set_facecolor('white')
|
| 254 |
ax.text(0.5, 0.5, f'Fundamentals Error: {str(e)}', ha='center', va='center',
|
|
@@ -256,7 +222,6 @@ def get_fundamentals(asset_name):
|
|
| 256 |
ax.axis('off')
|
| 257 |
return fig, pd.DataFrame()
|
| 258 |
|
| 259 |
-
# Create Gradio interface
|
| 260 |
with gr.Blocks(
|
| 261 |
theme=gr.themes.Default(primary_hue="blue", secondary_hue="blue"),
|
| 262 |
title="Trading Analysis & Prediction",
|
|
@@ -274,7 +239,6 @@ with gr.Blocks(
|
|
| 274 |
"""
|
| 275 |
) as demo:
|
| 276 |
|
| 277 |
-
# Header with anycoder link
|
| 278 |
gr.HTML("""
|
| 279 |
<div style="text-align: center; padding: 20px;">
|
| 280 |
<h1 style="color: #4169E1;">Trading Analysis & Prediction</h1>
|
|
@@ -306,14 +270,11 @@ with gr.Blocks(
|
|
| 306 |
with gr.Tabs():
|
| 307 |
with gr.TabItem("Chart Analysis"):
|
| 308 |
|
| 309 |
-
# Price Chart (Full Width)
|
| 310 |
chart_plot = gr.Plot(label="Price Chart")
|
| 311 |
|
| 312 |
-
# Price Predictions (Full Width)
|
| 313 |
with gr.Row():
|
| 314 |
pred_plot = gr.Plot(label="Price Predictions")
|
| 315 |
|
| 316 |
-
# Trading Metrics (Full Width, dipindahkan ke bawah)
|
| 317 |
with gr.Row():
|
| 318 |
metrics_output = gr.JSON(label="Trading Metrics")
|
| 319 |
|
|
@@ -333,7 +294,6 @@ with gr.Blocks(
|
|
| 333 |
interactive=False
|
| 334 |
)
|
| 335 |
|
| 336 |
-
# Event handlers
|
| 337 |
def update_all(interval, asset):
|
| 338 |
chart, metrics, pred = create_chart_analysis(interval, asset)
|
| 339 |
sentiment, news = analyze_sentiment(asset)
|
|
|
|
| 11 |
import base64
|
| 12 |
import plotly.graph_objects as go
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
asset_map = {
|
| 15 |
"Gold Futures (GC=F)": "GC=F",
|
| 16 |
"Bitcoin USD (BTC-USD)": "BTC-USD"
|
| 17 |
}
|
| 18 |
|
| 19 |
+
data_processor = DataProcessor()
|
| 20 |
+
sentiment_analyzer = SentimentAnalyzer()
|
| 21 |
+
model_handler = ModelHandler()
|
| 22 |
+
trading_logic = TradingLogic()
|
| 23 |
+
|
| 24 |
def create_chart_analysis(interval, asset_name):
|
|
|
|
| 25 |
try:
|
| 26 |
ticker = asset_map[asset_name]
|
| 27 |
df = data_processor.get_asset_data(ticker, interval)
|
| 28 |
if df.empty:
|
|
|
|
| 29 |
fig, ax = plt.subplots(figsize=(12, 8), facecolor='white')
|
| 30 |
fig.patch.set_facecolor('white')
|
| 31 |
ax.text(0.5, 0.5, f'No data available for {asset_name}\nPlease try a different interval',
|
|
|
|
| 36 |
pred_fig.patch.set_facecolor('white')
|
| 37 |
return fig, {}, pred_fig
|
| 38 |
|
|
|
|
| 39 |
df = data_processor.calculate_indicators(df)
|
| 40 |
|
|
|
|
|
|
|
| 41 |
ap = []
|
| 42 |
|
|
|
|
| 43 |
if 'SMA_20' in df.columns:
|
| 44 |
ap.append(mpf.make_addplot(df['SMA_20'].iloc[-100:], color='#FFA500', width=1.5, label='SMA 20'))
|
| 45 |
if 'SMA_50' in df.columns:
|
| 46 |
ap.append(mpf.make_addplot(df['SMA_50'].iloc[-100:], color='#FF4500', width=1.5, label='SMA 50'))
|
| 47 |
|
|
|
|
| 48 |
if 'BB_upper' in df.columns and 'BB_lower' in df.columns:
|
| 49 |
ap.append(mpf.make_addplot(df['BB_upper'].iloc[-100:], color='#4169E1', width=1, linestyle='dashed', label='BB Upper'))
|
| 50 |
ap.append(mpf.make_addplot(df['BB_lower'].iloc[-100:], color='#4169E1', width=1, linestyle='dashed', label='BB Lower'))
|
| 51 |
|
|
|
|
| 52 |
try:
|
| 53 |
fig, axes = mpf.plot(
|
| 54 |
+
df[-100:],
|
| 55 |
type='candle',
|
| 56 |
style='yahoo',
|
| 57 |
title=f'{asset_name} - {interval}',
|
| 58 |
ylabel='Price (USD)',
|
| 59 |
volume=True,
|
| 60 |
addplot=ap,
|
| 61 |
+
figsize=(15, 9),
|
| 62 |
returnfig=True,
|
| 63 |
warn_too_much_data=200,
|
| 64 |
+
# MENGGUNAKAN scale_padding UNTUK MEMBERI RUANG PADA SUMBU Y KANAN
|
| 65 |
+
scale_padding={'right': 1.0, 'left': 0.1}
|
| 66 |
)
|
| 67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
fig.patch.set_facecolor('white')
|
| 69 |
if axes:
|
| 70 |
axes[0].set_facecolor('white')
|
|
|
|
| 78 |
axes.set_title('Plot Generation Error', color='black')
|
| 79 |
axes.axis('off')
|
| 80 |
|
|
|
|
| 81 |
prepared_data = data_processor.prepare_for_chronos(df)
|
| 82 |
|
|
|
|
| 83 |
predictions = model_handler.predict(prepared_data, horizon=10)
|
| 84 |
current_price = df['Close'].iloc[-1]
|
| 85 |
|
|
|
|
| 86 |
signal, confidence = trading_logic.generate_signal(
|
| 87 |
predictions, current_price, df
|
| 88 |
)
|
| 89 |
|
|
|
|
| 90 |
tp, sl = trading_logic.calculate_tp_sl(
|
| 91 |
current_price, df['ATR'].iloc[-1] if 'ATR' in df.columns else 10, signal
|
| 92 |
)
|
| 93 |
|
|
|
|
| 94 |
metrics = {
|
| 95 |
"Current Price": f"${current_price:,.2f}",
|
| 96 |
"Signal": signal.upper(),
|
|
|
|
| 102 |
"Volume": f"{df['Volume'].iloc[-1]:,.0f}" if 'Volume' in df.columns else "N/A"
|
| 103 |
}
|
| 104 |
|
|
|
|
| 105 |
pred_fig, ax = plt.subplots(figsize=(10, 4), facecolor='white')
|
| 106 |
pred_fig.patch.set_facecolor('white')
|
| 107 |
|
|
|
|
| 108 |
hist_data = df['Close'].iloc[-30:]
|
| 109 |
hist_dates = df.index[-30:]
|
| 110 |
ax.plot(hist_dates, hist_data, color='#4169E1', linewidth=2, label='Historical')
|
| 111 |
|
|
|
|
| 112 |
if predictions.any() and len(predictions) > 0:
|
| 113 |
future_dates = pd.date_range(
|
| 114 |
start=df.index[-1], periods=len(predictions), freq='D'
|
|
|
|
| 116 |
ax.plot(future_dates, predictions, color='#FF6600', linewidth=2,
|
| 117 |
marker='o', markersize=4, label='Predictions')
|
| 118 |
|
|
|
|
| 119 |
ax.plot([hist_dates[-1], future_dates[0]],
|
| 120 |
[hist_data.iloc[-1], predictions[0]],
|
| 121 |
color='#FF6600', linewidth=1, linestyle='--')
|
|
|
|
| 130 |
return fig, metrics, pred_fig
|
| 131 |
|
| 132 |
except Exception as e:
|
|
|
|
| 133 |
fig, ax = plt.subplots(figsize=(12, 8), facecolor='white')
|
| 134 |
fig.patch.set_facecolor('white')
|
| 135 |
ax.text(0.5, 0.5, f'Error: {str(e)}', ha='center', va='center',
|
|
|
|
| 142 |
return fig, {}, pred_fig
|
| 143 |
|
| 144 |
def analyze_sentiment(asset_name):
|
|
|
|
| 145 |
try:
|
| 146 |
ticker = asset_map[asset_name]
|
|
|
|
| 147 |
sentiment_score, news_summary = sentiment_analyzer.analyze_market_sentiment(ticker)
|
| 148 |
|
|
|
|
|
|
|
| 149 |
fig = go.Figure(go.Indicator(
|
| 150 |
mode="gauge+number+delta",
|
| 151 |
value=sentiment_score,
|
|
|
|
| 156 |
'axis': {'range': [-1, 1]},
|
| 157 |
'bar': {'color': "#FFD700"},
|
| 158 |
'steps': [
|
| 159 |
+
{'range': [-1, -0.5], 'color': "rgba(255,0,0,0.5)"},
|
| 160 |
+
{'range': [-0.5, 0.5], 'color': "rgba(100,100,100,0.3)"},
|
| 161 |
+
{'range': [0.5, 1], 'color': "rgba(0,255,0,0.5)"}
|
| 162 |
],
|
| 163 |
'threshold': {
|
| 164 |
'line': {'color': "black", 'width': 4},
|
|
|
|
| 179 |
return fig, news_summary
|
| 180 |
|
| 181 |
except Exception as e:
|
|
|
|
| 182 |
fig, ax = plt.subplots(figsize=(6, 4), facecolor='white')
|
| 183 |
fig.patch.set_facecolor('white')
|
| 184 |
ax.text(0.5, 0.5, f'Sentiment Error: {str(e)}', ha='center', va='center',
|
|
|
|
| 187 |
return fig, f"<p>Error analyzing sentiment: {str(e)}</p>"
|
| 188 |
|
| 189 |
def get_fundamentals(asset_name):
|
|
|
|
| 190 |
try:
|
| 191 |
ticker = asset_map[asset_name]
|
| 192 |
fundamentals = data_processor.get_fundamental_data(ticker)
|
| 193 |
|
|
|
|
| 194 |
table_data = []
|
| 195 |
for key, value in fundamentals.items():
|
| 196 |
table_data.append([key, value])
|
| 197 |
|
| 198 |
df = pd.DataFrame(table_data, columns=['Metric', 'Value'])
|
| 199 |
|
|
|
|
| 200 |
fig, ax = plt.subplots(figsize=(6, 4), facecolor='white')
|
| 201 |
fig.patch.set_facecolor('white')
|
| 202 |
|
| 203 |
strength_index = fundamentals.get('Strength Index', 50)
|
| 204 |
|
|
|
|
| 205 |
ax.barh([0], [strength_index], height=0.3, color='gold', alpha=0.7)
|
| 206 |
ax.set_xlim(0, 100)
|
| 207 |
ax.set_ylim(-0.5, 0.5)
|
|
|
|
| 215 |
return fig, df
|
| 216 |
|
| 217 |
except Exception as e:
|
|
|
|
| 218 |
fig, ax = plt.subplots(figsize=(6, 4), facecolor='white')
|
| 219 |
fig.patch.set_facecolor('white')
|
| 220 |
ax.text(0.5, 0.5, f'Fundamentals Error: {str(e)}', ha='center', va='center',
|
|
|
|
| 222 |
ax.axis('off')
|
| 223 |
return fig, pd.DataFrame()
|
| 224 |
|
|
|
|
| 225 |
with gr.Blocks(
|
| 226 |
theme=gr.themes.Default(primary_hue="blue", secondary_hue="blue"),
|
| 227 |
title="Trading Analysis & Prediction",
|
|
|
|
| 239 |
"""
|
| 240 |
) as demo:
|
| 241 |
|
|
|
|
| 242 |
gr.HTML("""
|
| 243 |
<div style="text-align: center; padding: 20px;">
|
| 244 |
<h1 style="color: #4169E1;">Trading Analysis & Prediction</h1>
|
|
|
|
| 270 |
with gr.Tabs():
|
| 271 |
with gr.TabItem("Chart Analysis"):
|
| 272 |
|
|
|
|
| 273 |
chart_plot = gr.Plot(label="Price Chart")
|
| 274 |
|
|
|
|
| 275 |
with gr.Row():
|
| 276 |
pred_plot = gr.Plot(label="Price Predictions")
|
| 277 |
|
|
|
|
| 278 |
with gr.Row():
|
| 279 |
metrics_output = gr.JSON(label="Trading Metrics")
|
| 280 |
|
|
|
|
| 294 |
interactive=False
|
| 295 |
)
|
| 296 |
|
|
|
|
| 297 |
def update_all(interval, asset):
|
| 298 |
chart, metrics, pred = create_chart_analysis(interval, asset)
|
| 299 |
sentiment, news = analyze_sentiment(asset)
|