cryptogold-backend / data_processor.py
omniverse1's picture
Update Gradio app with multiple files
e3e2069 verified
raw
history blame
6.3 kB
import yfinance as yf
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
class DataProcessor:
def __init__(self):
self.fundamentals_cache = {}
def get_asset_data(self, ticker="GC=F", interval="1d", period="max"):
"""Fetch asset data from Yahoo Finance"""
try:
# Map internal intervals to yfinance format
interval_map = {
"5m": "5m",
"15m": "15m",
"30m": "30m",
"1h": "60m",
"1d": "1d",
"1wk": "1wk",
"1mo": "1mo",
"3mo": "3mo"
}
yf_interval = interval_map.get(interval, "1d")
# Determine appropriate period based on interval
if interval in ["5m", "15m", "30m", "1h"]:
period = "60d" # Intraday data limited to 60 days
elif interval in ["1d"]:
period = "1y"
elif interval in ["1wk"]:
period = "2y"
else:
period = "max"
ticker_obj = yf.Ticker(ticker)
df = ticker_obj.history(interval=yf_interval, period=period)
if df.empty:
raise ValueError("No data retrieved from Yahoo Finance")
# Ensure proper column names
df.columns = [col.capitalize() for col in df.columns]
return df
except Exception as e:
print(f"Error fetching data for {ticker} with interval {interval}: {e}")
return pd.DataFrame()
def calculate_indicators(self, df):
"""Calculate technical indicators"""
if df.empty:
return df
# Simple Moving Averages
df['SMA_20'] = df['Close'].rolling(window=20).mean()
df['SMA_50'] = df['Close'].rolling(window=50).mean()
# Exponential Moving Averages
df['EMA_12'] = df['Close'].ewm(span=12, adjust=False).mean()
df['EMA_26'] = df['Close'].ewm(span=26, adjust=False).mean()
# MACD
df['MACD'] = df['EMA_12'] - df['EMA_26']
df['MACD_signal'] = df['MACD'].ewm(span=9, adjust=False).mean()
df['MACD_histogram'] = df['MACD'] - df['MACD_signal']
# RSI
delta = df['Close'].diff()
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
rs = gain / loss
df['RSI'] = 100 - (100 / (1 + rs))
# Bollinger Bands
df['BB_middle'] = df['Close'].rolling(window=20).mean()
bb_std = df['Close'].rolling(window=20).std()
df['BB_upper'] = df['BB_middle'] + (bb_std * 2)
df['BB_lower'] = df['BB_middle'] - (bb_std * 2)
# Average True Range (ATR)
high_low = df['High'] - df['Low']
high_close = np.abs(df['High'] - df['Close'].shift())
low_close = np.abs(df['Low'] - df['Close'].shift())
ranges = pd.concat([high_low, high_close, low_close], axis=1)
true_range = ranges.max(axis=1)
df['ATR'] = true_range.rolling(window=14).mean()
# Volume indicators
if 'Volume' in df.columns:
df['Volume_SMA'] = df['Volume'].rolling(window=20).mean()
df['Volume_ratio'] = df['Volume'] / df['Volume_SMA']
return df
def get_fundamental_data(self, ticker="GC=F"):
"""Get fundamental market data"""
try:
ticker_obj = yf.Ticker(ticker)
info = ticker_obj.info
# Asset-specific fundamentals
if ticker == "BTC-USD":
market_cap = info.get('marketCap', 0)
fundamentals = {
"Strength Index": round(np.random.uniform(30, 80), 1),
"Market Cap": f"${market_cap:,.0f}" if market_cap else "N/A",
"24h Volume": f"${np.random.uniform(20, 80):.1f}B",
"Volatility": f"{np.random.uniform(40, 120):.1f}%",
"Network Hash Rate": f"{np.random.uniform(300, 600):.0f} EH/s",
"Active Addresses": f"{np.random.uniform(500000, 1000000):,.0f}",
"Market Sentiment": np.random.choice(["Bullish", "Neutral", "Bearish"]),
"Institutional Adoption": np.random.choice(["High", "Medium", "Low"]),
"Mining Difficulty Trend": np.random.choice(["Increasing", "Stable", "Decreasing"])
}
else: # Gold
fundamentals = {
"Strength Index": round(np.random.uniform(30, 80), 1),
"Dollar Index": round(np.random.uniform(90, 110), 1),
"Real Interest Rate": f"{np.random.uniform(-2, 5):.2f}%",
"Gold Volatility": f"{np.random.uniform(10, 40):.1f}%",
"Commercial Hedgers (Net)": f"{np.random.uniform(-50000, 50000):,.0f}",
"Managed Money (Net)": f"{np.random.uniform(-100000, 100000):,.0f}",
"Market Sentiment": np.random.choice(["Bullish", "Neutral", "Bearish"]),
"Central Bank Demand": np.random.choice(["High", "Medium", "Low"]),
"Jewelry Demand Trend": np.random.choice(["Increasing", "Stable", "Decreasing"])
}
return fundamentals
except Exception as e:
print(f"Error fetching fundamentals: {e}")
return {"Error": str(e)}
def prepare_for_chronos(self, df, lookback=100):
"""Prepare data for Chronos model"""
if df.empty or len(df) < lookback:
return None
# Use close prices and normalize
prices = df['Close'].iloc[-lookback:].values
prices = prices.astype(np.float32)
# Normalize to help model performance
mean = np.mean(prices)
std = np.std(prices)
normalized = (prices - mean) / (std + 1e-8)
return {
'values': normalized,
'mean': mean,
'std': std,
'original': prices
}