Pomilon
Deploy Aetheris to HF Space
1df0e33
from dataclasses import dataclass, field
import yaml
import torch
from typing import Optional
@dataclass
class AetherisConfig:
# Model dimensions
vocab_size: int = 50257
d_model: int = 768
n_layer: int = 24
num_experts: int = 4
top_k: int = 1
d_ff: int = 2304 # d_model * 3
# SSM parameters
ssm_d_state: int = 16
ssm_expand: int = 2
d_inner: Optional[int] = None # Will be d_model * ssm_expand if None
# Training parameters
load_balancing_coef: float = 1e-2
router_z_loss_coef: float = 1e-3
max_seq_len: int = 512
dtype: str = "float16" # "float16", "float32", "bfloat16"
# Optimization settings
use_cpu_offload: bool = False
gradient_checkpointing: bool = True
checkpoint_ssm_layers: bool = True
use_flash_attention: bool = False
def __post_init__(self):
if self.d_inner is None:
self.d_inner = self.d_model * self.ssm_expand
if self.d_ff is None:
self.d_ff = self.d_model * 3
@property
def torch_dtype(self):
if self.dtype == "float16":
return torch.float16
elif self.dtype == "float32":
return torch.float32
elif self.dtype == "bfloat16":
return torch.bfloat16
else:
raise ValueError(f"Unsupported dtype: {self.dtype}")
@classmethod
def from_yaml(cls, path: str):
with open(path, 'r') as f:
config_dict = yaml.safe_load(f)
return cls(**config_dict)
def to_yaml(self, path: str):
with open(path, 'w') as f:
yaml.dump(self.__dict__, f)