prithivMLmods's picture
update app
711bc97 verified
import os
import re
import json
import time
import unicodedata
import gc
from io import BytesIO
from typing import Iterable
from typing import Tuple, Optional, List, Dict, Any
import gradio as gr
import numpy as np
import torch
import spaces
from PIL import Image, ImageDraw, ImageFont
from transformers import (
Qwen2_5_VLForConditionalGeneration,
AutoProcessor,
AutoModelForImageTextToText
)
from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize
from qwen_vl_utils import process_vision_info
from gradio.themes import Soft
from gradio.themes.utils import colors, fonts, sizes
colors.orange_red = colors.Color(
name="orange_red",
c50="#FFF0E5",
c100="#FFE0CC",
c200="#FFC299",
c300="#FFA366",
c400="#FF8533",
c500="#FF4500",
c600="#E63E00",
c700="#CC3700",
c800="#B33000",
c900="#992900",
c950="#802200",
)
class OrangeRedTheme(Soft):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.gray,
secondary_hue: colors.Color | str = colors.orange_red,
neutral_hue: colors.Color | str = colors.slate,
text_size: sizes.Size | str = sizes.text_lg,
font: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
),
font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
text_size=text_size,
font=font,
font_mono=font_mono,
)
super().set(
background_fill_primary="*primary_50",
background_fill_primary_dark="*primary_900",
body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
button_primary_text_color="white",
button_primary_text_color_hover="white",
button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)",
button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)",
button_secondary_text_color="black",
button_secondary_text_color_hover="white",
button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)",
button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)",
button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)",
button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)",
slider_color="*secondary_500",
slider_color_dark="*secondary_600",
block_title_text_weight="600",
block_border_width="3px",
block_shadow="*shadow_drop_lg",
button_primary_shadow="*shadow_drop_lg",
button_large_padding="11px",
color_accent_soft="*primary_100",
block_label_background_fill="*primary_200",
)
orange_red_theme = OrangeRedTheme()
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Running on device: {device}")
print("🔄 Loading Fara-7B...")
MODEL_ID_V = "microsoft/Fara-7B"
try:
processor_v = AutoProcessor.from_pretrained(MODEL_ID_V, trust_remote_code=True)
model_v = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_V,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
except Exception as e:
print(f"Failed to load Fara: {e}")
model_v = None
processor_v = None
print("🔄 Loading UI-TARS-1.5-7B...")
MODEL_ID_X = "ByteDance-Seed/UI-TARS-1.5-7B"
try:
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True, use_fast=False)
model_x = AutoModelForImageTextToText.from_pretrained(
MODEL_ID_X,
trust_remote_code=True,
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32,
).to(device).eval()
except Exception as e:
print(f"Failed to load UI-TARS: {e}")
model_x = None
processor_x = None
print("🔄 Loading Holo1-3B...")
MODEL_ID_H = "Hcompany/Holo1-3B"
try:
processor_h = AutoProcessor.from_pretrained(MODEL_ID_H, trust_remote_code=True)
model_h = AutoModelForImageTextToText.from_pretrained(
MODEL_ID_H,
trust_remote_code=True,
torch_dtype=torch.float16
).to(device).eval()
except Exception as e:
print(f"Failed to load Holo: {e}")
model_h = None
processor_h = None
print("✅ Models loading sequence complete.")
def array_to_image(image_array: np.ndarray) -> Image.Image:
if image_array is None: raise ValueError("No image provided.")
return Image.fromarray(np.uint8(image_array))
def get_image_proc_params(processor) -> Dict[str, int]:
ip = getattr(processor, "image_processor", None)
default_min = 256 * 256
default_max = 1280 * 1280
patch_size = getattr(ip, "patch_size", 14)
merge_size = getattr(ip, "merge_size", 2)
min_pixels = getattr(ip, "min_pixels", default_min)
max_pixels = getattr(ip, "max_pixels", default_max)
if min_pixels is None: min_pixels = default_min
if max_pixels is None: max_pixels = default_max
return {
"patch_size": patch_size,
"merge_size": merge_size,
"min_pixels": min_pixels,
"max_pixels": max_pixels,
}
def apply_chat_template_compat(processor, messages: List[Dict[str, Any]]) -> str:
tok = getattr(processor, "tokenizer", None)
if hasattr(processor, "apply_chat_template"):
return processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
if tok is not None and hasattr(tok, "apply_chat_template"):
return tok.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
texts = []
for m in messages:
content = m.get("content", "")
if isinstance(content, list):
for c in content:
if isinstance(c, dict) and c.get("type") == "text":
texts.append(c.get("text", ""))
elif isinstance(content, str):
texts.append(content)
return "\n".join(texts)
def batch_decode_compat(processor, token_id_batches, **kw):
tok = getattr(processor, "tokenizer", None)
if hasattr(processor, "batch_decode"):
return processor.batch_decode(token_id_batches, **kw)
if tok is not None and hasattr(tok, "batch_decode"):
return tok.batch_decode(token_id_batches, **kw)
raise AttributeError("No batch_decode available on processor or tokenizer.")
def trim_generated(generated_ids, inputs):
in_ids = getattr(inputs, "input_ids", None)
if in_ids is None and isinstance(inputs, dict):
in_ids = inputs.get("input_ids", None)
if in_ids is None:
return generated_ids
return [out_ids[len(in_seq):] for in_seq, out_ids in zip(in_ids, generated_ids)]
def get_fara_prompt(task, image):
OS_SYSTEM_PROMPT = """You are a GUI agent. You are given a task and a screenshot of the current status.
You need to generate the next action to complete the task.
Output your action inside a <tool_call> block using JSON format.
Include "coordinate": [x, y] in pixels for interactions.
Examples:
<tool_call>{"name": "User", "arguments": {"action": "click", "coordinate": [400, 300]}}</tool_call>
<tool_call>{"name": "User", "arguments": {"action": "type", "coordinate": [100, 200], "text": "hello"}}</tool_call>
"""
return [
{"role": "system", "content": [{"type": "text", "text": OS_SYSTEM_PROMPT}]},
{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": f"Instruction: {task}"}]},
]
def get_localization_prompt(task, image):
guidelines = (
"Localize an element on the GUI image according to my instructions and "
"output a click position as Click(x, y) with x num pixels from the left edge "
"and y num pixels from the top edge."
)
return [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": f"{guidelines}\n{task}"}
],
}
]
def parse_click_response(text: str) -> List[Dict]:
actions = []
text = text.strip()
print(f"Parsing click-style output: {text}")
matches_click = re.findall(r"Click\s*\(\s*(\d+)\s*,\s*(\d+)\s*\)", text, re.IGNORECASE)
for m in matches_click:
actions.append({"type": "click", "x": int(m[0]), "y": int(m[1]), "text": ""})
matches_point = re.findall(r"point=\[\s*(\d+)\s*,\s*(\d+)\s*\]", text, re.IGNORECASE)
for m in matches_point:
actions.append({"type": "click", "x": int(m[0]), "y": int(m[1]), "text": ""})
matches_box = re.findall(r"start_box=['\"]?\(\s*(\d+)\s*,\s*(\d+)\s*\)['\"]?", text, re.IGNORECASE)
for m in matches_box:
actions.append({"type": "click", "x": int(m[0]), "y": int(m[1]), "text": ""})
matches_tuple = re.findall(r"(?:^|\s)\(\s*(\d+)\s*,\s*(\d+)\s*\)(?:$|\s|,)", text)
for m in matches_tuple:
actions.append({"type": "click", "x": int(m[0]), "y": int(m[1]), "text": ""})
unique_actions = []
seen = set()
for a in actions:
key = (a['type'], a['x'], a['y'])
if key not in seen:
seen.add(key)
unique_actions.append(a)
return unique_actions
def parse_fara_response(response: str) -> List[Dict]:
actions = []
matches = re.findall(r"<tool_call>(.*?)</tool_call>", response, re.DOTALL)
for match in matches:
try:
data = json.loads(match.strip())
args = data.get("arguments", {})
coords = args.get("coordinate", [])
action_type = args.get("action", "unknown")
text_content = args.get("text", "")
if coords and len(coords) == 2:
actions.append({
"type": action_type, "x": float(coords[0]), "y": float(coords[1]), "text": text_content
})
except Exception as e:
print(f"Error parsing Fara JSON: {e}")
pass
return actions
def create_localized_image(original_image: Image.Image, actions: list[dict]) -> Optional[Image.Image]:
if not actions: return None
img_copy = original_image.copy()
draw = ImageDraw.Draw(img_copy)
try:
font = ImageFont.load_default(size=18)
except IOError:
font = ImageFont.load_default()
for act in actions:
x = act['x']
y = act['y']
pixel_x, pixel_y = int(x), int(y)
color = 'red' if 'click' in act['type'].lower() else 'blue'
r = 20
line_width = 5
draw.ellipse([pixel_x - r, pixel_y - r, pixel_x + r, pixel_y + r], outline=color, width=line_width)
draw.ellipse([pixel_x - 4, pixel_y - 4, pixel_x + 4, pixel_y + 4], fill=color)
label = f"{act['type'].capitalize()}"
if act.get('text'): label += f": \"{act['text']}\""
text_pos = (pixel_x + 25, pixel_y - 15)
try:
bbox = draw.textbbox(text_pos, label, font=font)
padded_bbox = (bbox[0]-4, bbox[1]-2, bbox[2]+4, bbox[3]+2)
draw.rectangle(padded_bbox, fill="black", outline=color)
draw.text(text_pos, label, fill="white", font=font)
except Exception as e:
draw.text(text_pos, label, fill="white")
return img_copy
@spaces.GPU
def process_screenshot(input_numpy_image: np.ndarray, task: str, model_choice: str):
if input_numpy_image is None: return "⚠️ Please upload an image.", None
if not task.strip(): return "⚠️ Please provide a task instruction.", None
input_pil_image = array_to_image(input_numpy_image)
orig_w, orig_h = input_pil_image.size
actions = []
raw_response = ""
if model_choice == "Fara-7B":
if model_v is None: return "Error: Fara model failed to load on startup.", None
print("Using Fara Pipeline...")
messages = get_fara_prompt(task, input_pil_image)
text_prompt = processor_v.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor_v(
text=[text_prompt],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt"
)
inputs = inputs.to(device)
with torch.no_grad():
generated_ids = model_v.generate(**inputs, max_new_tokens=512)
generated_ids = trim_generated(generated_ids, inputs)
raw_response = processor_v.batch_decode(generated_ids, skip_special_tokens=True)[0]
actions = parse_fara_response(raw_response)
else:
if model_choice == "UI-TARS-1.5-7B":
model, processor = model_x, processor_x
if model is None: return "Error: UI-TARS model failed to load.", None
print("Using UI-TARS Pipeline...")
elif model_choice == "Holo1-3B":
model, processor = model_h, processor_h
if model is None: return "Error: Holo2-8B model failed to load.", None
print("Using Holo1-3B Pipeline...")
else:
return f"Error: Unknown model '{model_choice}'", None
ip_params = get_image_proc_params(processor)
resized_h, resized_w = smart_resize(
input_pil_image.height, input_pil_image.width,
factor=ip_params["patch_size"] * ip_params["merge_size"],
min_pixels=ip_params["min_pixels"],
max_pixels=ip_params["max_pixels"]
)
proc_image = input_pil_image.resize((resized_w, resized_h), Image.Resampling.LANCZOS)
messages = get_localization_prompt(task, proc_image)
text_prompt = apply_chat_template_compat(processor, messages)
inputs = processor(text=[text_prompt], images=[proc_image], padding=True, return_tensors="pt")
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids = trim_generated(generated_ids, inputs)
raw_response = batch_decode_compat(processor, generated_ids, skip_special_tokens=True)[0]
actions = parse_click_response(raw_response)
if resized_w > 0 and resized_h > 0:
scale_x = orig_w / resized_w
scale_y = orig_h / resized_h
for a in actions:
a['x'] = int(a['x'] * scale_x)
a['y'] = int(a['y'] * scale_y)
print(f"Raw Output: {raw_response}")
print(f"Parsed Actions: {actions}")
output_image = input_pil_image
if actions:
vis = create_localized_image(input_pil_image, actions)
if vis: output_image = vis
return raw_response, output_image
css="""
#col-container {
margin: 0 auto;
max-width: 960px;
}
#main-title h1 {font-size: 2.1em !important;}
"""
with gr.Blocks() as demo:
gr.Markdown("# **CUA GUI Operator 🖥️**", elem_id="main-title")
gr.Markdown("Perform Computer Use Agent tasks with the models: [Fara-7B](https://huggingface.co/microsoft/Fara-7B), [UI-TARS-1.5-7B](https://huggingface.co/ByteDance-Seed/UI-TARS-1.5-7B), and [Holo1](https://huggingface.co/Hcompany/Holo1-3B).")
with gr.Row():
with gr.Column(scale=2):
input_image = gr.Image(label="Upload UI Image", type="numpy", height=500)
with gr.Row():
model_choice = gr.Radio(
choices=["Fara-7B", "UI-TARS-1.5-7B", "Holo1-3B"],
label="Select Model",
value="Fara-7B",
interactive=True
)
task_input = gr.Textbox(
label="Task Instruction",
placeholder="e.g. Click on the search bar",
lines=2
)
submit_btn = gr.Button("Call CUA Agent", variant="primary")
with gr.Column(scale=3):
output_image = gr.Image(label="Visualized Action Points", elem_id="out_img", height=500)
output_text = gr.Textbox(label="Agent Model Response", lines=10)
submit_btn.click(
fn=process_screenshot,
inputs=[input_image, task_input, model_choice],
outputs=[output_text, output_image]
)
gr.Examples(
examples=[
["examples/1.png", "Click on the Fara-7B model.", "Fara-7B"],
["examples/2.png", "Click on the VLMs Collection", "UI-TARS-1.5-7B"],
["examples/3.png", "Click on the 'Real-time vision models' collection.", "Fara-7B"],
["examples/3.png", "Click on the 'Real-time vision models' collection.", "Holo1-3B"],
],
inputs=[input_image, task_input, model_choice],
label="Quick Examples"
)
if __name__ == "__main__":
demo.queue(max_size=50).launch(theme=orange_red_theme, css=css, mcp_server=True, ssr_mode=False, show_error=True)