Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,67 +1,67 @@
|
|
| 1 |
-
from transformers import DetrImageProcessor, DetrForObjectDetection
|
| 2 |
-
import torch
|
| 3 |
-
from PIL import Image, ImageDraw
|
| 4 |
-
import requests
|
| 5 |
-
import random
|
| 6 |
-
from IPython.display import display
|
| 7 |
-
import gradio as gr
|
| 8 |
-
|
| 9 |
-
# you can specify the revision tag if you don't want the timm dependency
|
| 10 |
-
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
|
| 11 |
-
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
|
| 12 |
-
|
| 13 |
-
def draw_detections(image, outputs, processor, model, threshold=0.9):
|
| 14 |
-
"""
|
| 15 |
-
Draw bounding boxes and labels on an image using detection results.
|
| 16 |
-
|
| 17 |
-
Args:
|
| 18 |
-
image (PIL.Image): Input image.
|
| 19 |
-
outputs (dict): Model output.
|
| 20 |
-
processor: The processor used for post-processing.
|
| 21 |
-
model: The object detection model.
|
| 22 |
-
threshold (float): Confidence threshold.
|
| 23 |
-
|
| 24 |
-
Returns:
|
| 25 |
-
PIL.Image: The image with bounding boxes drawn.
|
| 26 |
-
"""
|
| 27 |
-
target_sizes = torch.tensor([image.size[::-1]])
|
| 28 |
-
results = processor.post_process_object_detection(
|
| 29 |
-
outputs, target_sizes=target_sizes, threshold=threshold
|
| 30 |
-
)[0]
|
| 31 |
-
|
| 32 |
-
draw_image = image.copy()
|
| 33 |
-
draw = ImageDraw.Draw(draw_image, "RGBA")
|
| 34 |
-
|
| 35 |
-
# define fixed colors per label for consistency
|
| 36 |
-
COLORS = {}
|
| 37 |
-
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
| 38 |
-
box = [round(i, 2) for i in box.tolist()]
|
| 39 |
-
label_name = model.config.id2label[label.item()]
|
| 40 |
-
|
| 41 |
-
# assign consistent random color for each label type
|
| 42 |
-
if label_name not in COLORS:
|
| 43 |
-
COLORS[label_name] = tuple(random.choices(range(256), k=3))
|
| 44 |
-
color = COLORS[label_name]
|
| 45 |
-
|
| 46 |
-
# draw translucent box
|
| 47 |
-
draw.rectangle(box, fill=color + (80,), outline=color, width=3)
|
| 48 |
-
draw.text((box[0] + 3, box[1] + 3),
|
| 49 |
-
f"{label_name} {round(score.item(), 2)}",
|
| 50 |
-
fill=(255, 255, 255, 255))
|
| 51 |
-
|
| 52 |
-
return draw_image
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
def detect_and_draw(img):
|
| 56 |
-
inputs = processor(images=img, return_tensors="pt")
|
| 57 |
-
outputs = model(**inputs)
|
| 58 |
-
return draw_detections(img, outputs, processor, model)
|
| 59 |
-
|
| 60 |
-
demo = gr.Interface(
|
| 61 |
-
fn=detect_and_draw,
|
| 62 |
-
inputs=gr.Image(type="pil"),
|
| 63 |
-
outputs="image",
|
| 64 |
-
title="Object Detection Viewer"
|
| 65 |
-
)
|
| 66 |
-
|
| 67 |
-
demo.launch()
|
|
|
|
| 1 |
+
from transformers import DetrImageProcessor, DetrForObjectDetection
|
| 2 |
+
import torch
|
| 3 |
+
from PIL import Image, ImageDraw
|
| 4 |
+
import requests
|
| 5 |
+
import random
|
| 6 |
+
from IPython.display import display
|
| 7 |
+
import gradio as gr
|
| 8 |
+
|
| 9 |
+
# you can specify the revision tag if you don't want the timm dependency
|
| 10 |
+
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
|
| 11 |
+
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
|
| 12 |
+
|
| 13 |
+
def draw_detections(image, outputs, processor, model, threshold=0.9):
|
| 14 |
+
"""
|
| 15 |
+
Draw bounding boxes and labels on an image using detection results.
|
| 16 |
+
|
| 17 |
+
Args:
|
| 18 |
+
image (PIL.Image): Input image.
|
| 19 |
+
outputs (dict): Model output.
|
| 20 |
+
processor: The processor used for post-processing.
|
| 21 |
+
model: The object detection model.
|
| 22 |
+
threshold (float): Confidence threshold.
|
| 23 |
+
|
| 24 |
+
Returns:
|
| 25 |
+
PIL.Image: The image with bounding boxes drawn.
|
| 26 |
+
"""
|
| 27 |
+
target_sizes = torch.tensor([image.size[::-1]])
|
| 28 |
+
results = processor.post_process_object_detection(
|
| 29 |
+
outputs, target_sizes=target_sizes, threshold=threshold
|
| 30 |
+
)[0]
|
| 31 |
+
|
| 32 |
+
draw_image = image.copy()
|
| 33 |
+
draw = ImageDraw.Draw(draw_image, "RGBA")
|
| 34 |
+
|
| 35 |
+
# define fixed colors per label for consistency
|
| 36 |
+
COLORS = {}
|
| 37 |
+
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
| 38 |
+
box = [round(i, 2) for i in box.tolist()]
|
| 39 |
+
label_name = model.config.id2label[label.item()]
|
| 40 |
+
|
| 41 |
+
# assign consistent random color for each label type
|
| 42 |
+
if label_name not in COLORS:
|
| 43 |
+
COLORS[label_name] = tuple(random.choices(range(256), k=3))
|
| 44 |
+
color = COLORS[label_name]
|
| 45 |
+
|
| 46 |
+
# draw translucent box
|
| 47 |
+
draw.rectangle(box, fill=color + (80,), outline=color, width=3)
|
| 48 |
+
draw.text((box[0] + 3, box[1] + 3),
|
| 49 |
+
f"{label_name} {round(score.item(), 2)}",
|
| 50 |
+
fill=(255, 255, 255, 255))
|
| 51 |
+
|
| 52 |
+
return draw_image
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def detect_and_draw(img):
|
| 56 |
+
inputs = processor(images=img, return_tensors="pt")
|
| 57 |
+
outputs = model(**inputs)
|
| 58 |
+
return draw_detections(img, outputs, processor, model)
|
| 59 |
+
|
| 60 |
+
demo = gr.Interface(
|
| 61 |
+
fn=detect_and_draw,
|
| 62 |
+
inputs=gr.Image(type="pil"),
|
| 63 |
+
outputs="image",
|
| 64 |
+
title="Object Detection Viewer"
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
demo.launch(show_error=True)
|