File size: 11,389 Bytes
3d7eadf f010ea5 3d7eadf f010ea5 3d7eadf f010ea5 3d7eadf f010ea5 5323683 f010ea5 5712979 f010ea5 3d7eadf 5323683 7eadd35 5323683 f010ea5 3d7eadf f010ea5 5323683 f010ea5 5323683 f010ea5 5323683 f010ea5 5323683 7eadd35 f010ea5 5323683 f010ea5 5323683 f010ea5 5323683 f010ea5 5323683 f010ea5 5323683 f010ea5 5323683 f010ea5 5323683 f010ea5 5712979 5323683 f010ea5 b494aa1 7eadd35 5323683 7eadd35 5323683 7eadd35 5323683 7eadd35 5323683 7eadd35 5323683 7eadd35 5323683 3d7eadf 7eadd35 5323683 7eadd35 3d7eadf 06e9b23 f010ea5 7eadd35 06e9b23 5323683 5712979 5323683 5712979 5323683 7eadd35 5323683 5712979 5323683 7eadd35 5712979 b494aa1 7eadd35 5323683 f010ea5 5323683 f010ea5 7eadd35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import os
import sys
import json
import random
import shutil
import hashlib
import uuid
from typing import List
import base64
from io import BytesIO
import time
import threading
import numpy as np
import torch
import torch.nn as nn
from PIL import Image, ImageOps
from matplotlib import cm
import cv2
from fastapi import FastAPI, File, UploadFile, Form, Request, Depends
from fastapi.responses import HTMLResponse, RedirectResponse
from fastapi.templating import Jinja2Templates
from fastapi.staticfiles import StaticFiles
sys.path.append(os.path.abspath(os.path.dirname(__file__)))
from models.densenet.preprocess.preprocessingwangchan import get_tokenizer, get_transforms
from models.densenet.train_densenet_only import DenseNet121Classifier
from models.densenet.train_text_only import TextClassifier
import requests
import uvicorn
HF_MODEL_URL = "https://huggingface.co/qqqqqqat/densenet_wangchan/resolve/main/best_fusion_densenet.pth"
LOCAL_MODEL_PATH = "models/densenet/best_fusion_densenet.pth"
def download_model_if_needed():
if not os.path.exists(LOCAL_MODEL_PATH):
print("📥 Downloading model from HuggingFace...")
os.makedirs(os.path.dirname(LOCAL_MODEL_PATH), exist_ok=True)
response = requests.get(HF_MODEL_URL)
with open(LOCAL_MODEL_PATH, "wb") as f:
f.write(response.content)
print("✅ Model downloaded.")
torch.manual_seed(42); np.random.seed(42); random.seed(42)
FUSION_LABELMAP_PATH = "models/densenet/label_map_fusion_densenet.json"
FUSION_WEIGHTS_PATH = "models/densenet/best_fusion_densenet.pth"
with open(FUSION_LABELMAP_PATH, "r", encoding="utf-8") as f:
label_map = json.load(f)
class_names = [label for label, _ in sorted(label_map.items(), key=lambda x: x[1])]
NUM_CLASSES = len(class_names)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"🧠 Using device: {device}")
class FusionDenseNetText(nn.Module):
def __init__(self, num_classes, dropout=0.3):
super().__init__()
self.image_model = DenseNet121Classifier(num_classes=num_classes)
self.text_model = TextClassifier(num_classes=num_classes)
self.fusion = nn.Sequential(
nn.Linear(num_classes * 2, 128), nn.ReLU(),
nn.Dropout(dropout), nn.Linear(128, num_classes)
)
def forward(self, image, input_ids, attention_mask):
logits_img = self.image_model(image)
logits_txt = self.text_model(input_ids, attention_mask)
fused_in = torch.cat([logits_img, logits_txt], dim=1)
fused_out = self.fusion(fused_in)
return fused_out, logits_img, logits_txt
print("🔄 Loading AI model...")
fusion_model = FusionDenseNetText(num_classes=NUM_CLASSES).to(device)
# ดาวน์โหลดก่อน
download_model_if_needed()
fusion_model = FusionDenseNetText(num_classes=NUM_CLASSES).to(device)
fusion_model.load_state_dict(torch.load(LOCAL_MODEL_PATH, map_location=device))
fusion_model.eval()
print("✅ AI Model loaded successfully!")
fusion_model.eval()
tokenizer = get_tokenizer()
transform = get_transforms((224, 224))
def _find_last_conv2d(mod: torch.nn.Module):
last = None
for m in mod.modules():
if isinstance(m, torch.nn.Conv2d): last = m
return last
def compute_gradcam_overlay(img_pil, image_tensor, target_class_idx):
img_branch = fusion_model.image_model
target_layer = _find_last_conv2d(img_branch)
if target_layer is None: return None
activations, gradients = [], []
def fwd_hook(_m, _i, o): activations.append(o)
def bwd_hook(_m, gin, gout): gradients.append(gout[0])
h1 = target_layer.register_forward_hook(fwd_hook)
h2 = target_layer.register_full_backward_hook(bwd_hook)
try:
img_branch.zero_grad()
logits_img = img_branch(image_tensor)
score = logits_img[0, target_class_idx]
score.backward()
act = activations[-1].detach()[0]
grad = gradients[-1].detach()[0]
weights = torch.mean(grad, dim=(1, 2))
cam = torch.relu(torch.sum(weights[:, None, None] * act, dim=0))
cam -= cam.min(); cam /= (cam.max() + 1e-8)
cam_img = Image.fromarray((cam.cpu().numpy() * 255).astype(np.uint8)).resize(img_pil.size, Image.BILINEAR)
cam_np = np.asarray(cam_img).astype(np.float32) / 255.0
heatmap = cm.get_cmap("jet")(cam_np)[:, :, :3]
img_np = np.asarray(img_pil.convert("RGB")).astype(np.float32) / 255.0
overlay = (0.6 * img_np + 0.4 * heatmap)
return np.clip(overlay * 255, 0, 255).astype(np.uint8)
finally:
h1.remove(); h2.remove(); img_branch.zero_grad()
app = FastAPI()
app.mount("/static", StaticFiles(directory="static"), name="static")
templates = Jinja2Templates(directory="templates")
os.makedirs("uploads", exist_ok=True)
EXPIRATION_MINUTES = 10
results_cache = {}
cache_lock = threading.Lock()
def cleanup_expired_cache():
"""
ฟังก์ชันนี้จะทำงานใน Background Thread เพื่อตรวจสอบและลบ Cache ที่หมดอายุ
"""
while True:
with cache_lock: # ล็อคเพื่อความปลอดภัยในการเข้าถึง cache
# สร้าง list ของ key ที่จะลบ เพื่อไม่ให้แก้ไข dict ขณะวน loop
expired_keys = []
current_time = time.time()
for key, value in results_cache.items():
if current_time - value["created_at"] > EXPIRATION_MINUTES * 60:
expired_keys.append(key)
# ลบ key ที่หมดอายุ
for key in expired_keys:
del results_cache[key]
print(f"🧹 Cache expired and removed for key: {key}")
time.sleep(60) # ตรวจสอบทุกๆ 60 วินาที
@app.on_event("startup")
async def startup_event():
"""
เริ่ม Background Thread สำหรับทำความสะอาด Cache เมื่อแอปเริ่มทำงาน
"""
cleanup_thread = threading.Thread(target=cleanup_expired_cache, daemon=True)
cleanup_thread.start()
print("🗑️ Cache cleanup task started.")
SYMPTOM_MAP = {
"noSymptoms": "ไม่มีอาการ", "drinkAlcohol": "ดื่มเหล้า", "smoking": "สูบบุหรี่",
"chewBetelNut": "เคี้ยวหมาก", "eatSpicyFood": "กินเผ็ดแสบ", "wipeOff": "เช็ดออกได้",
"alwaysHurts": "เจ็บเมื่อโดนแผล"
}
def process_with_ai_model(image_path: str, prompt_text: str):
try:
image_pil = Image.open(image_path)
image_pil = ImageOps.exif_transpose(image_pil)
image_pil = image_pil.convert("RGB")
image_tensor = transform(image_pil).unsqueeze(0).to(device)
enc = tokenizer(prompt_text, return_tensors="pt", padding="max_length",
truncation=True, max_length=128)
ids, mask = enc["input_ids"].to(device), enc["attention_mask"].to(device)
with torch.no_grad():
fused_logits, _, _ = fusion_model(image_tensor, ids, mask)
probs_fused = torch.softmax(fused_logits, dim=1)[0].cpu().numpy()
pred_idx = int(np.argmax(probs_fused))
pred_label = class_names[pred_idx]
confidence = float(probs_fused[pred_idx]) * 100
gradcam_overlay_np = compute_gradcam_overlay(image_pil, image_tensor, pred_idx)
def image_to_base64(img):
buffered = BytesIO()
img.save(buffered, format="JPEG")
return base64.b64encode(buffered.getvalue()).decode('utf-8')
original_b64 = image_to_base64(image_pil)
if gradcam_overlay_np is not None:
gradcam_pil = Image.fromarray(gradcam_overlay_np)
gradcam_b64 = image_to_base64(gradcam_pil)
else:
gradcam_b64 = original_b64
return original_b64, gradcam_b64, pred_label, f"{confidence:.2f}"
except Exception as e:
print(f"❌ Error during AI processing: {e}")
return None, None, "Error", "0.00"
@app.get("/", response_class=RedirectResponse)
async def root():
return RedirectResponse(url="/detect")
@app.get("/detect", response_class=HTMLResponse)
async def show_upload_form(request: Request):
return templates.TemplateResponse("detect.html", {"request": request})
@app.post("/uploaded")
async def handle_upload(
request: Request,
file: UploadFile = File(...),
checkboxes: List[str] = Form([]),
symptom_text: str = Form("")
):
temp_filepath = os.path.join("uploads", f"{uuid.uuid4()}_{file.filename}")
with open(temp_filepath, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
final_prompt_parts = []
selected_symptoms_thai = {SYMPTOM_MAP.get(cb) for cb in checkboxes if SYMPTOM_MAP.get(cb)}
if "ไม่มีอาการ" in selected_symptoms_thai:
symptoms_group = {"เจ็บเมื่อโดนแผล", "กินเผ็ดแสบ"}
lifestyles_group = {"ดื่มเหล้า", "สูบบุหรี่", "เคี้ยวหมาก"}
patterns_group = {"เช็ดออกได้"}
special_group = {"ไม่มีอาการ"}
final_selected = (selected_symptoms_thai - symptoms_group) | \
(selected_symptoms_thai & (lifestyles_group | patterns_group | special_group))
final_prompt_parts.append(" ".join(sorted(list(final_selected))))
elif selected_symptoms_thai:
final_prompt_parts.append(" ".join(sorted(list(selected_symptoms_thai))))
if symptom_text and symptom_text.strip():
final_prompt_parts.append(symptom_text.strip())
final_prompt = "; ".join(final_prompt_parts) if final_prompt_parts else "ไม่มีอาการ"
image_b64, gradcam_b64, name_out, eva_output = process_with_ai_model(
image_path=temp_filepath, prompt_text=final_prompt
)
os.remove(temp_filepath)
result_id = str(uuid.uuid4())
result_data = {
"image_b64_data": image_b64, "gradcam_b64_data": gradcam_b64,
"name_out": name_out, "eva_output": eva_output,
}
with cache_lock:
results_cache[result_id] = {
"data": result_data,
"created_at": time.time()
}
results_url = request.url_for('show_results', result_id=result_id)
return RedirectResponse(url=results_url, status_code=303)
@app.get("/results/{result_id}", response_class=HTMLResponse)
async def show_results(request: Request, result_id: str):
with cache_lock:
cached_item = results_cache.get(result_id)
if not cached_item or (time.time() - cached_item["created_at"] > EXPIRATION_MINUTES * 60):
if cached_item:
with cache_lock:
del results_cache[result_id]
return RedirectResponse(url="/detect")
context = {"request": request, **cached_item["data"]}
return templates.TemplateResponse("detect.html", context)
if __name__ == "__main__":
port = int(os.environ.get("PORT", 8000)) # ใช้ PORT ของ hosting ถ้ามี
uvicorn.run(app, host="0.0.0.0", port=port) |