Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,7 +8,12 @@ import contextlib
|
|
| 8 |
# βοΈ Setup
|
| 9 |
# ============================================================
|
| 10 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
# ============================================================
|
| 14 |
# π§ Reference attention (PyTorch SDPA)
|
|
@@ -19,20 +24,6 @@ def reference_attention(query, key, value, causal=False):
|
|
| 19 |
out = torch.nn.functional.scaled_dot_product_attention(query, key, value, is_causal=causal)
|
| 20 |
return out.transpose(1, 2).contiguous()
|
| 21 |
|
| 22 |
-
def var_reference_attention(q, k, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, causal=False):
|
| 23 |
-
batch_size = cu_seqlens_q.shape[0] - 1
|
| 24 |
-
total_tokens_q = q.shape[0]
|
| 25 |
-
out = torch.zeros((total_tokens_q, q.shape[1], q.shape[2]), device=q.device, dtype=q.dtype)
|
| 26 |
-
for b in range(batch_size):
|
| 27 |
-
start_q, end_q = cu_seqlens_q[b], cu_seqlens_q[b + 1]
|
| 28 |
-
start_k, end_k = cu_seqlens_k[b], cu_seqlens_k[b + 1]
|
| 29 |
-
q_slice = q[start_q:end_q].unsqueeze(0)
|
| 30 |
-
k_slice = k[start_k:end_k].unsqueeze(0)
|
| 31 |
-
v_slice = v[start_k:end_k].unsqueeze(0)
|
| 32 |
-
attn_out = reference_attention(q_slice, k_slice, v_slice, causal=causal)
|
| 33 |
-
out[start_q:end_q] = attn_out.squeeze(0)
|
| 34 |
-
return out
|
| 35 |
-
|
| 36 |
# ============================================================
|
| 37 |
# ποΈ Test function
|
| 38 |
# ============================================================
|
|
@@ -48,25 +39,30 @@ def run_flash_attention(B=2, S=5, H=4, D=8, seed=42):
|
|
| 48 |
print(f"Running FlashAttention Tests on device: {device}")
|
| 49 |
print(f"Input shape: B={B}, S={S}, H={H}, D={D}\n")
|
| 50 |
|
| 51 |
-
#
|
| 52 |
out_ref = reference_attention(q, k, v)
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
return log.getvalue()
|
| 72 |
|
|
@@ -75,7 +71,7 @@ def run_flash_attention(B=2, S=5, H=4, D=8, seed=42):
|
|
| 75 |
# ============================================================
|
| 76 |
with gr.Blocks(title="Flash Attention Kernel Tester") as demo:
|
| 77 |
gr.Markdown("## β‘ Flash Attention Kernel Tester")
|
| 78 |
-
gr.Markdown("Compare PyTorch SDPA vs FlashAttention implementations interactively.")
|
| 79 |
|
| 80 |
with gr.Row():
|
| 81 |
B = gr.Slider(1, 8, value=2, step=1, label="Batch Size (B)")
|
|
@@ -90,4 +86,4 @@ with gr.Blocks(title="Flash Attention Kernel Tester") as demo:
|
|
| 90 |
|
| 91 |
run_btn.click(run_flash_attention, inputs=[B, S, H, D, seed], outputs=output)
|
| 92 |
|
| 93 |
-
demo.launch(
|
|
|
|
| 8 |
# βοΈ Setup
|
| 9 |
# ============================================================
|
| 10 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 11 |
+
|
| 12 |
+
if torch.cuda.is_available():
|
| 13 |
+
flash_attn = get_kernel("kernels-community/vllm-flash-attn3")
|
| 14 |
+
flash_attn_func = flash_attn.flash_attn_func
|
| 15 |
+
else:
|
| 16 |
+
flash_attn_func = None # CPU fallback
|
| 17 |
|
| 18 |
# ============================================================
|
| 19 |
# π§ Reference attention (PyTorch SDPA)
|
|
|
|
| 24 |
out = torch.nn.functional.scaled_dot_product_attention(query, key, value, is_causal=causal)
|
| 25 |
return out.transpose(1, 2).contiguous()
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
# ============================================================
|
| 28 |
# ποΈ Test function
|
| 29 |
# ============================================================
|
|
|
|
| 39 |
print(f"Running FlashAttention Tests on device: {device}")
|
| 40 |
print(f"Input shape: B={B}, S={S}, H={H}, D={D}\n")
|
| 41 |
|
| 42 |
+
# Always run PyTorch reference attention
|
| 43 |
out_ref = reference_attention(q, k, v)
|
| 44 |
+
print(f"β
Reference attention OK: {out_ref.shape}\n")
|
| 45 |
+
|
| 46 |
+
# Run FlashAttention if CUDA available
|
| 47 |
+
if flash_attn_func is not None:
|
| 48 |
+
try:
|
| 49 |
+
out_flash, _ = flash_attn_func(q, k, v, causal=False)
|
| 50 |
+
print("β‘ FlashAttention (non-causal):")
|
| 51 |
+
print(f" Output: {out_flash.shape}")
|
| 52 |
+
print(f" Close to reference: {torch.allclose(out_flash, out_ref, atol=1e-2, rtol=1e-3)}\n")
|
| 53 |
+
|
| 54 |
+
out_flash_causal, _ = flash_attn_func(q, k, v, causal=True)
|
| 55 |
+
out_ref_causal = reference_attention(q, k, v, causal=True)
|
| 56 |
+
print("β‘ FlashAttention (causal):")
|
| 57 |
+
print(f" Output: {out_flash_causal.shape}")
|
| 58 |
+
print(f" Close to reference: {torch.allclose(out_flash_causal, out_ref_causal, atol=1e-2, rtol=1e-3)}\n")
|
| 59 |
+
|
| 60 |
+
except Exception as e:
|
| 61 |
+
print("β FlashAttention test failed:")
|
| 62 |
+
print(str(e))
|
| 63 |
+
else:
|
| 64 |
+
print("β οΈ CUDA not available β FlashAttention test skipped.")
|
| 65 |
+
print("Using PyTorch SDPA (reference) only.\n")
|
| 66 |
|
| 67 |
return log.getvalue()
|
| 68 |
|
|
|
|
| 71 |
# ============================================================
|
| 72 |
with gr.Blocks(title="Flash Attention Kernel Tester") as demo:
|
| 73 |
gr.Markdown("## β‘ Flash Attention Kernel Tester")
|
| 74 |
+
gr.Markdown("Compare PyTorch SDPA vs FlashAttention implementations interactively. Works on both CPU and CUDA.")
|
| 75 |
|
| 76 |
with gr.Row():
|
| 77 |
B = gr.Slider(1, 8, value=2, step=1, label="Batch Size (B)")
|
|
|
|
| 86 |
|
| 87 |
run_btn.click(run_flash_attention, inputs=[B, S, H, D, seed], outputs=output)
|
| 88 |
|
| 89 |
+
demo.launch()
|