|
|
|
|
|
"""Untitled9.ipynb |
|
|
|
|
|
Automatically generated by Colab. |
|
|
|
|
|
Original file is located at |
|
|
https://colab.research.google.com/drive/1lByo8bABlmF1g_sMH-Aps0X2jAab758m |
|
|
""" |
|
|
|
|
|
!pip install gradio --quiet |
|
|
!pip install transformers --quiet |
|
|
|
|
|
import gradio as gr |
|
|
from transformers import pipeline |
|
|
|
|
|
def sentiment_analysis(text): |
|
|
sentiment_pipeline = pipeline("sentiment-analysis") |
|
|
result = sentiment_pipeline(text)[0] |
|
|
return result["label"], result["score"] |
|
|
|
|
|
def chatbot_response(user_input): |
|
|
chatbot = pipeline("text-generation", model="microsoft/DialoGPT-medium") |
|
|
response = chatbot(user_input, max_length=100)[0]["generated_text"] |
|
|
return response |
|
|
|
|
|
def summarize_text(text): |
|
|
summarization_pipeline = pipeline("summarization") |
|
|
summary = summarization_pipeline(text, max_length=100, min_length=30, do_sample=False)[0]["summary_text"] |
|
|
return summary |
|
|
|
|
|
def text_to_speech(text): |
|
|
tts_pipeline = pipeline("text-to-speech", model="facebook/fastspeech2-en-ljspeech") |
|
|
audio = tts_pipeline(text) |
|
|
return audio["audio"] |
|
|
|
|
|
with gr.Blocks() as demo: |
|
|
with gr.Tab("Sentiment Analysis"): |
|
|
text_input = gr.Textbox(label="Enter text") |
|
|
sentiment_output = gr.Textbox(label="Sentiment") |
|
|
confidence_output = gr.Number(label="Confidence Score") |
|
|
sentiment_btn = gr.Button("Analyze") |
|
|
sentiment_btn.click(sentiment_analysis, inputs=text_input, outputs=[sentiment_output, confidence_output]) |
|
|
|
|
|
with gr.Tab("Chatbot"): |
|
|
chat_input = gr.Textbox(label="Ask the chatbot") |
|
|
chat_output = gr.Textbox(label="Response") |
|
|
chat_btn = gr.Button("Send") |
|
|
chat_btn.click(chatbot_response, inputs=chat_input, outputs=chat_output) |
|
|
|
|
|
with gr.Tab("Summarization"): |
|
|
text_area = gr.Textbox(label="Enter long text", lines=5) |
|
|
summary_output = gr.Textbox(label="Summary") |
|
|
summary_btn = gr.Button("Summarize") |
|
|
summary_btn.click(summarize_text, inputs=text_area, outputs=summary_output) |
|
|
|
|
|
with gr.Tab("Text-to-Speech"): |
|
|
tts_input = gr.Textbox(label="Enter text to convert to speech") |
|
|
tts_output = gr.Audio(label="Generated Speech") |
|
|
tts_btn = gr.Button("Convert") |
|
|
tts_btn.click(text_to_speech, inputs=tts_input, outputs=tts_output) |
|
|
|
|
|
demo.launch() |