# -*- coding: utf-8 -*- """Untitled9.ipynb Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1lByo8bABlmF1g_sMH-Aps0X2jAab758m """ import gradio as gr from transformers import pipeline def sentiment_analysis(text): sentiment_pipeline = pipeline("sentiment-analysis") result = sentiment_pipeline(text)[0] return result["label"], result["score"] def chatbot_response(user_input): chatbot = pipeline("text-generation", model="microsoft/DialoGPT-medium") response = chatbot(user_input, max_length=100)[0]["generated_text"] return response def summarize_text(text): summarization_pipeline = pipeline("summarization") summary = summarization_pipeline(text, max_length=100, min_length=30, do_sample=False)[0]["summary_text"] return summary def text_to_speech(text): tts_pipeline = pipeline("text-to-speech", model="facebook/fastspeech2-en-ljspeech") audio = tts_pipeline(text) return audio["audio"] with gr.Blocks() as demo: with gr.Tab("Sentiment Analysis"): text_input = gr.Textbox(label="Enter text") sentiment_output = gr.Textbox(label="Sentiment") confidence_output = gr.Number(label="Confidence Score") sentiment_btn = gr.Button("Analyze") sentiment_btn.click(sentiment_analysis, inputs=text_input, outputs=[sentiment_output, confidence_output]) with gr.Tab("Chatbot"): chat_input = gr.Textbox(label="Ask the chatbot") chat_output = gr.Textbox(label="Response") chat_btn = gr.Button("Send") chat_btn.click(chatbot_response, inputs=chat_input, outputs=chat_output) with gr.Tab("Summarization"): text_area = gr.Textbox(label="Enter long text", lines=5) summary_output = gr.Textbox(label="Summary") summary_btn = gr.Button("Summarize") summary_btn.click(summarize_text, inputs=text_area, outputs=summary_output) with gr.Tab("Text-to-Speech"): tts_input = gr.Textbox(label="Enter text to convert to speech") tts_output = gr.Audio(label="Generated Speech") tts_btn = gr.Button("Convert") tts_btn.click(text_to_speech, inputs=tts_input, outputs=tts_output) demo.launch()