rdune71's picture
Add ngrok URL input in Streamlit UI and improve diagnostic script
8b21538
raw
history blame
9.08 kB
# Force redeploy trigger - version 1.5
import streamlit as st
from utils.config import config
import requests
import json
import os
from core.memory import load_user_state
from core.llm import LLMClient
# Set page config
st.set_page_config(page_title="AI Life Coach", page_icon="🧘", layout="centered")
# Initialize session state for ngrok URL
if "ngrok_url" not in st.session_state:
st.session_state.ngrok_url = config.ollama_host
# Sidebar for user selection
st.sidebar.title("🧘 AI Life Coach")
user = st.sidebar.selectbox("Select User", ["Rob", "Sarah"])
# Ngrok URL input in sidebar
st.sidebar.markdown("---")
st.sidebar.subheader("Ollama Connection")
ngrok_input = st.sidebar.text_input("Ngrok URL", value=st.session_state.ngrok_url)
if st.sidebar.button("Update Ngrok URL"):
st.session_state.ngrok_url = ngrok_input
st.sidebar.success("Ngrok URL updated!")
st.experimental_rerun()
st.sidebar.markdown("---")
# Get environment info
BASE_URL = os.environ.get("SPACE_ID", "") # Will be set in HF Spaces
IS_HF_SPACE = bool(BASE_URL)
# Headers to skip ngrok browser warning
NGROK_HEADERS = {
"ngrok-skip-browser-warning": "true",
"User-Agent": "AI-Life-Coach-App"
}
# Session state for model status
if "model_status" not in st.session_state:
st.session_state.model_status = "checking"
if "available_models" not in st.session_state:
st.session_state.available_models = []
# Fetch Ollama status
def get_ollama_status(ngrok_url):
try:
# Try to connect to the remote Ollama service directly
response = requests.get(
f"{ngrok_url}/api/tags",
headers=NGROK_HEADERS,
timeout=10
)
if response.status_code == 200:
models = response.json().get("models", [])
model_names = [m.get("name") for m in models]
st.session_state.available_models = model_names
if models:
return {
"running": True,
"model_loaded": models[0].get("name"),
"remote_host": ngrok_url,
"available_models": model_names
}
else:
st.session_state.model_status = "no_models"
return {
"running": False,
"model_loaded": None,
"remote_host": ngrok_url,
"message": "Connected to Ollama but no models found"
}
except Exception as e:
st.session_state.model_status = "unreachable"
# If direct connection fails, return error info
return {
"running": False,
"model_loaded": None,
"error": str(e),
"remote_host": ngrok_url
}
# Poll for model availability
def poll_model_status(ngrok_url):
if st.session_state.model_status in ["checking", "no_models"]:
try:
response = requests.get(
f"{ngrok_url}/api/tags",
headers=NGROK_HEADERS,
timeout=5
)
if response.status_code == 200:
models = response.json().get("models", [])
model_names = [m.get("name") for m in models]
st.session_state.available_models = model_names
if config.local_model_name in model_names:
st.session_state.model_status = "ready"
elif models:
st.session_state.model_status = "different_models"
else:
st.session_state.model_status = "no_models"
except:
st.session_state.model_status = "unreachable"
# After user selects name, load conversation history
def get_conversation_history(user_id):
user_state = load_user_state(user_id)
if user_state and "conversation" in user_state:
return json.loads(user_state["conversation"])
return []
# Check Ollama status with the current ngrok URL
ollama_status = get_ollama_status(st.session_state.ngrok_url)
# Poll for model status (run once per session)
poll_model_status(st.session_state.ngrok_url)
# Display Ollama status
use_fallback = not ollama_status.get("running", False) or config.use_fallback
if use_fallback:
st.sidebar.warning("🌐 Using Hugging Face fallback (Ollama not available)")
if "error" in ollama_status:
st.sidebar.caption(f"Error: {ollama_status['error'][:50]}...")
else:
st.sidebar.success(f"🧠 Ollama Model: {ollama_status['model_loaded']}")
st.sidebar.info(f"Connected to: {ollama_status['remote_host']}")
# Model status indicator
model_status_container = st.sidebar.empty()
if st.session_state.model_status == "ready":
model_status_container.success("βœ… Model Ready")
elif st.session_state.model_status == "checking":
model_status_container.info("πŸ” Checking model...")
elif st.session_state.model_status == "no_models":
model_status_container.warning("⚠️ No models found")
elif st.session_state.model_status == "different_models":
model_status_container.warning("⚠️ Different models available")
else: # unreachable
model_status_container.error("❌ Ollama unreachable")
# Main chat interface
st.title("🧘 AI Life Coach")
st.markdown("Talk to your personal development assistant.")
# Show detailed status
with st.expander("πŸ” Connection Status"):
st.write("Ollama Status:", ollama_status)
st.write("Model Status:", st.session_state.model_status)
st.write("Available Models:", st.session_state.available_models)
st.write("Environment Info:")
st.write("- Is HF Space:", IS_HF_SPACE)
st.write("- Base URL:", BASE_URL or "Not in HF Space")
st.write("- Configured Ollama Host:", config.ollama_host)
st.write("- Current Ngrok URL:", st.session_state.ngrok_url)
st.write("- Using Fallback:", use_fallback)
# Function to send message to Ollama
def send_to_ollama(user_input, conversation_history, ngrok_url):
try:
payload = {
"model": config.local_model_name,
"messages": conversation_history,
"stream": False
}
response = requests.post(
f"{ngrok_url}/api/chat",
json=payload,
headers=NGROK_HEADERS,
timeout=60
)
if response.status_code == 200:
response_data = response.json()
return response_data.get("message", {}).get("content", "")
else:
st.error(f"Ollama API error: {response.status_code}")
st.error(response.text[:200])
return None
except Exception as e:
st.error(f"Connection error: {e}")
return None
# Function to send message to Hugging Face (fallback)
def send_to_hf(user_input, conversation_history):
try:
# Initialize LLM client for Hugging Face
llm_client = LLMClient(provider="huggingface")
# Format prompt for HF
prompt = ""
for msg in conversation_history:
role = msg["role"]
content = msg["content"]
if role == "system":
prompt += f"System: {content}\n"
elif role == "user":
prompt += f"Human: {content}\n"
elif role == "assistant":
prompt += f"Assistant: {content}\n"
prompt += "Assistant:"
response = llm_client.generate(prompt, max_tokens=500, stream=False)
return response
except Exception as e:
st.error(f"Hugging Face API error: {e}")
return None
# Display conversation history
conversation = get_conversation_history(user)
for msg in conversation:
role = msg["role"].capitalize()
content = msg["content"]
st.markdown(f"**{role}:** {content}")
# Chat input
user_input = st.text_input("Your message...", key="input")
if st.button("Send"):
if user_input.strip() == "":
st.warning("Please enter a message.")
else:
# Display user message
st.markdown(f"**You:** {user_input}")
# Prepare conversation history
conversation_history = [{"role": msg["role"], "content": msg["content"]}
for msg in conversation[-5:]] # Last 5 messages
conversation_history.append({"role": "user", "content": user_input})
# Send to appropriate backend
with st.spinner("AI Coach is thinking..."):
if use_fallback:
ai_response = send_to_hf(user_input, conversation_history)
backend_used = "Hugging Face"
else:
ai_response = send_to_ollama(user_input, conversation_history, st.session_state.ngrok_url)
backend_used = "Ollama"
if ai_response:
st.markdown(f"**AI Coach ({backend_used}):** {ai_response}")
# Note: In a production app, we'd save the conversation to Redis here
else:
st.error(f"Failed to get response from {backend_used}.")