Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,16 +2,30 @@ import os
|
|
| 2 |
import time
|
| 3 |
import logging
|
| 4 |
from typing import Optional
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
from fastapi import FastAPI, HTTPException
|
| 6 |
from pydantic import BaseModel
|
| 7 |
from transformers import pipeline
|
| 8 |
|
|
|
|
|
|
|
|
|
|
| 9 |
logging.basicConfig(level=logging.INFO)
|
| 10 |
logger = logging.getLogger("biogpt_chatbot")
|
| 11 |
|
| 12 |
-
#
|
| 13 |
# PROMPT TEMPLATES
|
| 14 |
-
#
|
| 15 |
MEDICAL_PROMPTS = {
|
| 16 |
"dermatology": """
|
| 17 |
You are DermX-AI, a specialized medical AI assistant trained in dermatology.
|
|
@@ -38,14 +52,14 @@ Please consult a dermatologist or qualified healthcare provider for personalized
|
|
| 38 |
""",
|
| 39 |
}
|
| 40 |
|
| 41 |
-
#
|
| 42 |
-
#
|
| 43 |
-
#
|
| 44 |
class ChatRequest(BaseModel):
|
| 45 |
question: str
|
| 46 |
context: Optional[str] = None
|
| 47 |
-
mode: Optional[str] = "dermatology" # dermatology | general
|
| 48 |
-
max_new_tokens: Optional[int] =
|
| 49 |
temperature: Optional[float] = 0.7
|
| 50 |
top_p: Optional[float] = 0.9
|
| 51 |
|
|
@@ -56,30 +70,35 @@ class ChatResponse(BaseModel):
|
|
| 56 |
confidence: int
|
| 57 |
sources: list
|
| 58 |
|
| 59 |
-
# =========================
|
| 60 |
-
# FASTAPI SETUP
|
| 61 |
-
# =========================
|
| 62 |
app = FastAPI(title="BioGPT-Large Medical Chatbot")
|
| 63 |
|
| 64 |
-
MODEL_ID = "microsoft/BioGPT-Large"
|
| 65 |
generator = None
|
| 66 |
|
|
|
|
|
|
|
|
|
|
| 67 |
@app.on_event("startup")
|
| 68 |
def load_model():
|
| 69 |
global generator
|
| 70 |
-
logger.info(f"Loading Hugging Face model via pipeline: {MODEL_ID}")
|
| 71 |
try:
|
| 72 |
-
|
| 73 |
generator = pipeline("text-generation", model=MODEL_ID, device=-1)
|
| 74 |
logger.info("Model loaded successfully.")
|
| 75 |
except Exception as e:
|
| 76 |
logger.exception("Failed to load model")
|
| 77 |
generator = None
|
| 78 |
|
|
|
|
|
|
|
|
|
|
| 79 |
@app.get("/")
|
| 80 |
def root():
|
| 81 |
return {"status": "ok", "model_loaded": generator is not None, "model": MODEL_ID}
|
| 82 |
|
|
|
|
|
|
|
|
|
|
| 83 |
@app.post("/chat", response_model=ChatResponse)
|
| 84 |
def chat(req: ChatRequest):
|
| 85 |
if generator is None:
|
|
@@ -88,14 +107,18 @@ def chat(req: ChatRequest):
|
|
| 88 |
if not req.question.strip():
|
| 89 |
raise HTTPException(status_code=400, detail="Question cannot be empty")
|
| 90 |
|
| 91 |
-
#
|
| 92 |
mode = req.mode.lower() if req.mode else "dermatology"
|
| 93 |
system_prompt = MEDICAL_PROMPTS.get(mode, MEDICAL_PROMPTS["general"])
|
|
|
|
|
|
|
| 94 |
prompt = f"{system_prompt}\n\nUser Question: {req.question.strip()}\n\nAI Answer:"
|
| 95 |
if req.context:
|
| 96 |
prompt = req.context.strip() + "\n\n" + prompt
|
| 97 |
|
|
|
|
| 98 |
t0 = time.time()
|
|
|
|
| 99 |
try:
|
| 100 |
outputs = generator(
|
| 101 |
prompt,
|
|
@@ -106,8 +129,10 @@ def chat(req: ChatRequest):
|
|
| 106 |
return_full_text=False,
|
| 107 |
num_return_sequences=1,
|
| 108 |
)
|
|
|
|
| 109 |
answer = outputs[0]["generated_text"].strip()
|
| 110 |
final_answer = f"{answer}\n\n{MEDICAL_PROMPTS['disclaimer']}"
|
|
|
|
| 111 |
took = time.time() - t0
|
| 112 |
confidence = min(95, 70 + int(len(answer) / 50))
|
| 113 |
|
|
|
|
| 2 |
import time
|
| 3 |
import logging
|
| 4 |
from typing import Optional
|
| 5 |
+
|
| 6 |
+
# =============================
|
| 7 |
+
# Hugging Face cache fix for Spaces
|
| 8 |
+
# =============================
|
| 9 |
+
os.environ["TRANSFORMERS_CACHE"] = "/tmp/.cache/huggingface/transformers"
|
| 10 |
+
os.environ["HF_HOME"] = "/tmp/.cache/huggingface"
|
| 11 |
+
os.makedirs("/tmp/.cache/huggingface/transformers", exist_ok=True)
|
| 12 |
+
|
| 13 |
+
# =============================
|
| 14 |
+
# Imports
|
| 15 |
+
# =============================
|
| 16 |
from fastapi import FastAPI, HTTPException
|
| 17 |
from pydantic import BaseModel
|
| 18 |
from transformers import pipeline
|
| 19 |
|
| 20 |
+
# =============================
|
| 21 |
+
# Logging
|
| 22 |
+
# =============================
|
| 23 |
logging.basicConfig(level=logging.INFO)
|
| 24 |
logger = logging.getLogger("biogpt_chatbot")
|
| 25 |
|
| 26 |
+
# =============================
|
| 27 |
# PROMPT TEMPLATES
|
| 28 |
+
# =============================
|
| 29 |
MEDICAL_PROMPTS = {
|
| 30 |
"dermatology": """
|
| 31 |
You are DermX-AI, a specialized medical AI assistant trained in dermatology.
|
|
|
|
| 52 |
""",
|
| 53 |
}
|
| 54 |
|
| 55 |
+
# =============================
|
| 56 |
+
# FastAPI setup
|
| 57 |
+
# =============================
|
| 58 |
class ChatRequest(BaseModel):
|
| 59 |
question: str
|
| 60 |
context: Optional[str] = None
|
| 61 |
+
mode: Optional[str] = "dermatology" # "dermatology" | "general"
|
| 62 |
+
max_new_tokens: Optional[int] = 100
|
| 63 |
temperature: Optional[float] = 0.7
|
| 64 |
top_p: Optional[float] = 0.9
|
| 65 |
|
|
|
|
| 70 |
confidence: int
|
| 71 |
sources: list
|
| 72 |
|
|
|
|
|
|
|
|
|
|
| 73 |
app = FastAPI(title="BioGPT-Large Medical Chatbot")
|
| 74 |
|
| 75 |
+
MODEL_ID = os.environ.get("MODEL_ID", "microsoft/BioGPT-Large")
|
| 76 |
generator = None
|
| 77 |
|
| 78 |
+
# =============================
|
| 79 |
+
# Load model on startup
|
| 80 |
+
# =============================
|
| 81 |
@app.on_event("startup")
|
| 82 |
def load_model():
|
| 83 |
global generator
|
|
|
|
| 84 |
try:
|
| 85 |
+
logger.info(f"Loading Hugging Face model via pipeline: {MODEL_ID}")
|
| 86 |
generator = pipeline("text-generation", model=MODEL_ID, device=-1)
|
| 87 |
logger.info("Model loaded successfully.")
|
| 88 |
except Exception as e:
|
| 89 |
logger.exception("Failed to load model")
|
| 90 |
generator = None
|
| 91 |
|
| 92 |
+
# =============================
|
| 93 |
+
# Root endpoint
|
| 94 |
+
# =============================
|
| 95 |
@app.get("/")
|
| 96 |
def root():
|
| 97 |
return {"status": "ok", "model_loaded": generator is not None, "model": MODEL_ID}
|
| 98 |
|
| 99 |
+
# =============================
|
| 100 |
+
# Chat endpoint
|
| 101 |
+
# =============================
|
| 102 |
@app.post("/chat", response_model=ChatResponse)
|
| 103 |
def chat(req: ChatRequest):
|
| 104 |
if generator is None:
|
|
|
|
| 107 |
if not req.question.strip():
|
| 108 |
raise HTTPException(status_code=400, detail="Question cannot be empty")
|
| 109 |
|
| 110 |
+
# Select system prompt
|
| 111 |
mode = req.mode.lower() if req.mode else "dermatology"
|
| 112 |
system_prompt = MEDICAL_PROMPTS.get(mode, MEDICAL_PROMPTS["general"])
|
| 113 |
+
|
| 114 |
+
# Build final prompt
|
| 115 |
prompt = f"{system_prompt}\n\nUser Question: {req.question.strip()}\n\nAI Answer:"
|
| 116 |
if req.context:
|
| 117 |
prompt = req.context.strip() + "\n\n" + prompt
|
| 118 |
|
| 119 |
+
logger.info(f"Generating answer for question: {req.question[:80]}...")
|
| 120 |
t0 = time.time()
|
| 121 |
+
|
| 122 |
try:
|
| 123 |
outputs = generator(
|
| 124 |
prompt,
|
|
|
|
| 129 |
return_full_text=False,
|
| 130 |
num_return_sequences=1,
|
| 131 |
)
|
| 132 |
+
|
| 133 |
answer = outputs[0]["generated_text"].strip()
|
| 134 |
final_answer = f"{answer}\n\n{MEDICAL_PROMPTS['disclaimer']}"
|
| 135 |
+
|
| 136 |
took = time.time() - t0
|
| 137 |
confidence = min(95, 70 + int(len(answer) / 50))
|
| 138 |
|