Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,13 +1,10 @@
|
|
| 1 |
-
# app/main.py
|
| 2 |
-
|
| 3 |
import os
|
| 4 |
import time
|
| 5 |
import logging
|
| 6 |
from typing import Optional
|
| 7 |
-
|
| 8 |
-
from fastapi import FastAPI, HTTPException, Query
|
| 9 |
from pydantic import BaseModel
|
| 10 |
-
from transformers import
|
| 11 |
|
| 12 |
logging.basicConfig(level=logging.INFO)
|
| 13 |
logger = logging.getLogger("biogpt_chatbot")
|
|
@@ -20,7 +17,6 @@ MEDICAL_PROMPTS = {
|
|
| 20 |
You are DermX-AI, a specialized medical AI assistant trained in dermatology.
|
| 21 |
Your role is to provide clear, evidence-based information about skin conditions,
|
| 22 |
diagnostic insights, and treatment options.
|
| 23 |
-
|
| 24 |
- Use simple but professional language, suitable for both patients and clinicians.
|
| 25 |
- When explaining, balance medical accuracy with user-friendly clarity.
|
| 26 |
- For any uncertain or critical cases, clearly advise consultation with a dermatologist.
|
|
@@ -43,15 +39,15 @@ Please consult a dermatologist or qualified healthcare provider for personalized
|
|
| 43 |
}
|
| 44 |
|
| 45 |
# =========================
|
| 46 |
-
#
|
| 47 |
# =========================
|
| 48 |
class ChatRequest(BaseModel):
|
| 49 |
question: str
|
| 50 |
context: Optional[str] = None
|
| 51 |
-
mode: Optional[str] = "dermatology" #
|
| 52 |
-
max_new_tokens: Optional[int] =
|
| 53 |
-
temperature: Optional[float] =
|
| 54 |
-
top_p: Optional[float] =
|
| 55 |
|
| 56 |
class ChatResponse(BaseModel):
|
| 57 |
answer: str
|
|
@@ -60,58 +56,29 @@ class ChatResponse(BaseModel):
|
|
| 60 |
confidence: int
|
| 61 |
sources: list
|
| 62 |
|
|
|
|
|
|
|
|
|
|
| 63 |
app = FastAPI(title="BioGPT-Large Medical Chatbot")
|
| 64 |
|
| 65 |
-
MODEL_ID =
|
| 66 |
-
MAX_NEW_TOKENS = int(os.environ.get("MAX_NEW_TOKENS", "200"))
|
| 67 |
-
TEMPERATURE = float(os.environ.get("TEMPERATURE", "0.7"))
|
| 68 |
-
TOP_P = float(os.environ.get("TOP_P", "0.9"))
|
| 69 |
-
DEVICE = int(os.environ.get("DEVICE", "-1")) # -1 = CPU
|
| 70 |
-
USE_4BIT = os.environ.get("USE_4BIT", "false").lower() == "true"
|
| 71 |
-
|
| 72 |
generator = None
|
| 73 |
|
| 74 |
@app.on_event("startup")
|
| 75 |
def load_model():
|
| 76 |
global generator
|
|
|
|
| 77 |
try:
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
bnb_config = BitsAndBytesConfig(
|
| 81 |
-
load_in_4bit=True,
|
| 82 |
-
bnb_4bit_quant_type="nf4",
|
| 83 |
-
bnb_4bit_compute_dtype="float16",
|
| 84 |
-
bnb_4bit_use_double_quant=True,
|
| 85 |
-
)
|
| 86 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, use_fast=False)
|
| 87 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 88 |
-
MODEL_ID,
|
| 89 |
-
quantization_config=bnb_config,
|
| 90 |
-
device_map="auto",
|
| 91 |
-
trust_remote_code=True,
|
| 92 |
-
)
|
| 93 |
-
else:
|
| 94 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, use_fast=False)
|
| 95 |
-
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, trust_remote_code=True)
|
| 96 |
-
|
| 97 |
-
generator = pipeline(
|
| 98 |
-
"text-generation",
|
| 99 |
-
model=model,
|
| 100 |
-
tokenizer=tokenizer,
|
| 101 |
-
device=DEVICE,
|
| 102 |
-
)
|
| 103 |
logger.info("Model loaded successfully.")
|
| 104 |
except Exception as e:
|
| 105 |
-
logger.exception("
|
| 106 |
generator = None
|
| 107 |
|
| 108 |
@app.get("/")
|
| 109 |
def root():
|
| 110 |
-
return {
|
| 111 |
-
"status": "ok",
|
| 112 |
-
"model_loaded": _loaded_model is not None,
|
| 113 |
-
"model": _loaded_model,
|
| 114 |
-
}
|
| 115 |
|
| 116 |
@app.post("/chat", response_model=ChatResponse)
|
| 117 |
def chat(req: ChatRequest):
|
|
@@ -121,37 +88,26 @@ def chat(req: ChatRequest):
|
|
| 121 |
if not req.question.strip():
|
| 122 |
raise HTTPException(status_code=400, detail="Question cannot be empty")
|
| 123 |
|
| 124 |
-
#
|
| 125 |
mode = req.mode.lower() if req.mode else "dermatology"
|
| 126 |
system_prompt = MEDICAL_PROMPTS.get(mode, MEDICAL_PROMPTS["general"])
|
| 127 |
-
|
| 128 |
-
# Build final prompt
|
| 129 |
prompt = f"{system_prompt}\n\nUser Question: {req.question.strip()}\n\nAI Answer:"
|
| 130 |
if req.context:
|
| 131 |
prompt = req.context.strip() + "\n\n" + prompt
|
| 132 |
|
| 133 |
-
max_new = req.max_new_tokens or MAX_NEW_TOKENS
|
| 134 |
-
temp = req.temperature or TEMPERATURE
|
| 135 |
-
top_p = req.top_p or TOP_P
|
| 136 |
-
|
| 137 |
-
logger.info(f"Generating answer for: {req.question[:80]}...")
|
| 138 |
t0 = time.time()
|
| 139 |
-
|
| 140 |
try:
|
| 141 |
outputs = generator(
|
| 142 |
prompt,
|
| 143 |
-
max_new_tokens=
|
| 144 |
-
temperature=
|
| 145 |
-
top_p=top_p,
|
| 146 |
do_sample=True,
|
| 147 |
return_full_text=False,
|
| 148 |
num_return_sequences=1,
|
| 149 |
)
|
| 150 |
answer = outputs[0]["generated_text"].strip()
|
| 151 |
-
|
| 152 |
-
# Always append disclaimer
|
| 153 |
final_answer = f"{answer}\n\n{MEDICAL_PROMPTS['disclaimer']}"
|
| 154 |
-
|
| 155 |
took = time.time() - t0
|
| 156 |
confidence = min(95, 70 + int(len(answer) / 50))
|
| 157 |
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import time
|
| 3 |
import logging
|
| 4 |
from typing import Optional
|
| 5 |
+
from fastapi import FastAPI, HTTPException
|
|
|
|
| 6 |
from pydantic import BaseModel
|
| 7 |
+
from transformers import pipeline
|
| 8 |
|
| 9 |
logging.basicConfig(level=logging.INFO)
|
| 10 |
logger = logging.getLogger("biogpt_chatbot")
|
|
|
|
| 17 |
You are DermX-AI, a specialized medical AI assistant trained in dermatology.
|
| 18 |
Your role is to provide clear, evidence-based information about skin conditions,
|
| 19 |
diagnostic insights, and treatment options.
|
|
|
|
| 20 |
- Use simple but professional language, suitable for both patients and clinicians.
|
| 21 |
- When explaining, balance medical accuracy with user-friendly clarity.
|
| 22 |
- For any uncertain or critical cases, clearly advise consultation with a dermatologist.
|
|
|
|
| 39 |
}
|
| 40 |
|
| 41 |
# =========================
|
| 42 |
+
# REQUEST/RESPONSE MODELS
|
| 43 |
# =========================
|
| 44 |
class ChatRequest(BaseModel):
|
| 45 |
question: str
|
| 46 |
context: Optional[str] = None
|
| 47 |
+
mode: Optional[str] = "dermatology" # dermatology | general
|
| 48 |
+
max_new_tokens: Optional[int] = 200
|
| 49 |
+
temperature: Optional[float] = 0.7
|
| 50 |
+
top_p: Optional[float] = 0.9
|
| 51 |
|
| 52 |
class ChatResponse(BaseModel):
|
| 53 |
answer: str
|
|
|
|
| 56 |
confidence: int
|
| 57 |
sources: list
|
| 58 |
|
| 59 |
+
# =========================
|
| 60 |
+
# FASTAPI SETUP
|
| 61 |
+
# =========================
|
| 62 |
app = FastAPI(title="BioGPT-Large Medical Chatbot")
|
| 63 |
|
| 64 |
+
MODEL_ID = "microsoft/BioGPT-Large"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
generator = None
|
| 66 |
|
| 67 |
@app.on_event("startup")
|
| 68 |
def load_model():
|
| 69 |
global generator
|
| 70 |
+
logger.info(f"Loading Hugging Face model via pipeline: {MODEL_ID}")
|
| 71 |
try:
|
| 72 |
+
# Use HF hosted model (CPU is fine, HF handles backend)
|
| 73 |
+
generator = pipeline("text-generation", model=MODEL_ID, device=-1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
logger.info("Model loaded successfully.")
|
| 75 |
except Exception as e:
|
| 76 |
+
logger.exception("Failed to load model")
|
| 77 |
generator = None
|
| 78 |
|
| 79 |
@app.get("/")
|
| 80 |
def root():
|
| 81 |
+
return {"status": "ok", "model_loaded": generator is not None, "model": MODEL_ID}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
@app.post("/chat", response_model=ChatResponse)
|
| 84 |
def chat(req: ChatRequest):
|
|
|
|
| 88 |
if not req.question.strip():
|
| 89 |
raise HTTPException(status_code=400, detail="Question cannot be empty")
|
| 90 |
|
| 91 |
+
# Build prompt
|
| 92 |
mode = req.mode.lower() if req.mode else "dermatology"
|
| 93 |
system_prompt = MEDICAL_PROMPTS.get(mode, MEDICAL_PROMPTS["general"])
|
|
|
|
|
|
|
| 94 |
prompt = f"{system_prompt}\n\nUser Question: {req.question.strip()}\n\nAI Answer:"
|
| 95 |
if req.context:
|
| 96 |
prompt = req.context.strip() + "\n\n" + prompt
|
| 97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
t0 = time.time()
|
|
|
|
| 99 |
try:
|
| 100 |
outputs = generator(
|
| 101 |
prompt,
|
| 102 |
+
max_new_tokens=req.max_new_tokens,
|
| 103 |
+
temperature=req.temperature,
|
| 104 |
+
top_p=req.top_p,
|
| 105 |
do_sample=True,
|
| 106 |
return_full_text=False,
|
| 107 |
num_return_sequences=1,
|
| 108 |
)
|
| 109 |
answer = outputs[0]["generated_text"].strip()
|
|
|
|
|
|
|
| 110 |
final_answer = f"{answer}\n\n{MEDICAL_PROMPTS['disclaimer']}"
|
|
|
|
| 111 |
took = time.time() - t0
|
| 112 |
confidence = min(95, 70 + int(len(answer) / 50))
|
| 113 |
|