Spaces:
Build error
Build error
| import gradio as gr | |
| import os | |
| from utils.default_models import ensure_default_models | |
| import sys | |
| import traceback | |
| from pathlib import Path | |
| from time import perf_counter as timer | |
| import numpy as np | |
| import torch | |
| from encoder import inference as encoder | |
| from synthesizer.inference import Synthesizer | |
| #from toolbox.utterance import Utterance | |
| from vocoder import inference as vocoder | |
| import time | |
| import librosa | |
| import numpy as np | |
| #import sounddevice as sd | |
| import soundfile as sf | |
| import argparse | |
| from utils.argutils import print_args | |
| parser = argparse.ArgumentParser( | |
| formatter_class=argparse.ArgumentDefaultsHelpFormatter | |
| ) | |
| parser.add_argument("-e", "--enc_model_fpath", type=Path, | |
| default="saved_models/default/encoder.pt", | |
| help="Path to a saved encoder") | |
| parser.add_argument("-s", "--syn_model_fpath", type=Path, | |
| default="saved_models/default/synthesizer.pt", | |
| help="Path to a saved synthesizer") | |
| parser.add_argument("-v", "--voc_model_fpath", type=Path, | |
| default="saved_models/default/vocoder.pt", | |
| help="Path to a saved vocoder") | |
| parser.add_argument("--cpu", action="store_true", help=\ | |
| "If True, processing is done on CPU, even when a GPU is available.") | |
| parser.add_argument("--no_sound", action="store_true", help=\ | |
| "If True, audio won't be played.") | |
| parser.add_argument("--seed", type=int, default=None, help=\ | |
| "Optional random number seed value to make toolbox deterministic.") | |
| args = parser.parse_args() | |
| arg_dict = vars(args) | |
| print_args(args, parser) | |
| # Maximum of generated wavs to keep on memory | |
| MAX_WAVS = 15 | |
| utterances = set() | |
| current_generated = (None, None, None, None) # speaker_name, spec, breaks, wav | |
| synthesizer = None # type: Synthesizer | |
| current_wav = None | |
| waves_list = [] | |
| waves_count = 0 | |
| waves_namelist = [] | |
| # Hide GPUs from Pytorch to force CPU processing | |
| if arg_dict.pop("cpu"): | |
| os.environ["CUDA_VISIBLE_DEVICES"] = "-1" | |
| print("Running a test of your configuration...\n") | |
| if torch.cuda.is_available(): | |
| device_id = torch.cuda.current_device() | |
| gpu_properties = torch.cuda.get_device_properties(device_id) | |
| ## Print some environment information (for debugging purposes) | |
| print("Found %d GPUs available. Using GPU %d (%s) of compute capability %d.%d with " | |
| "%.1fGb total memory.\n" % | |
| (torch.cuda.device_count(), | |
| device_id, | |
| gpu_properties.name, | |
| gpu_properties.major, | |
| gpu_properties.minor, | |
| gpu_properties.total_memory / 1e9)) | |
| else: | |
| print("Using CPU for inference.\n") | |
| ## Load the models one by one. | |
| print("Preparing the encoder, the synthesizer and the vocoder...") | |
| ensure_default_models(Path("saved_models")) | |
| #encoder.load_model(args.enc_model_fpath) | |
| #synthesizer = Synthesizer(args.syn_model_fpath) | |
| #vocoder.load_model(args.voc_model_fpath) | |
| def compute_embedding(in_fpath): | |
| if not encoder.is_loaded(): | |
| model_fpath = args.enc_model_fpath | |
| print("Loading the encoder %s... " % model_fpath) | |
| start = time.time() | |
| encoder.load_model(model_fpath) | |
| print("Done (%dms)." % int(1000 * (time.time() - start)), "append") | |
| ## Computing the embedding | |
| # First, we load the wav using the function that the speaker encoder provides. This is | |
| # Get the wav from the disk. We take the wav with the vocoder/synthesizer format for | |
| # playback, so as to have a fair comparison with the generated audio | |
| print("Step 1- load_preprocess_wav",in_fpath) | |
| wav = Synthesizer.load_preprocess_wav(in_fpath) | |
| # important: there is preprocessing that must be applied. | |
| # The following two methods are equivalent: | |
| # - Directly load from the filepath: | |
| print("Step 2- preprocess_wav") | |
| preprocessed_wav = encoder.preprocess_wav(wav) | |
| # - If the wav is already loaded: | |
| #original_wav, sampling_rate = librosa.load(str(in_fpath)) | |
| #preprocessed_wav = encoder.preprocess_wav(original_wav, sampling_rate) | |
| # Compute the embedding | |
| print("Step 3- embed_utterance") | |
| embed, partial_embeds, _ = encoder.embed_utterance(preprocessed_wav, return_partials=True) | |
| print("Loaded file succesfully") | |
| # Then we derive the embedding. There are many functions and parameters that the | |
| # speaker encoder interfaces. These are mostly for in-depth research. You will typically | |
| # only use this function (with its default parameters): | |
| #embed = encoder.embed_utterance(preprocessed_wav) | |
| return embed | |
| def create_spectrogram(text,embed): | |
| # If seed is specified, reset torch seed and force synthesizer reload | |
| if args.seed is not None: | |
| torch.manual_seed(args.seed) | |
| synthesizer = Synthesizer(args.syn_model_fpath) | |
| # Synthesize the spectrogram | |
| model_fpath = args.syn_model_fpath | |
| print("Loading the synthesizer %s... " % model_fpath) | |
| start = time.time() | |
| synthesizer = Synthesizer(model_fpath) | |
| print("Done (%dms)." % int(1000 * (time.time()- start)), "append") | |
| # The synthesizer works in batch, so you need to put your data in a list or numpy array | |
| texts = [text] | |
| embeds = [embed] | |
| # If you know what the attention layer alignments are, you can retrieve them here by | |
| # passing return_alignments=True | |
| specs = synthesizer.synthesize_spectrograms(texts, embeds) | |
| breaks = [spec.shape[1] for spec in specs] | |
| spec = np.concatenate(specs, axis=1) | |
| sample_rate=synthesizer.sample_rate | |
| return spec, breaks , sample_rate | |
| def generate_waveform(current_generated): | |
| speaker_name, spec, breaks = current_generated | |
| assert spec is not None | |
| ## Generating the waveform | |
| print("Synthesizing the waveform:") | |
| # If seed is specified, reset torch seed and reload vocoder | |
| if args.seed is not None: | |
| torch.manual_seed(args.seed) | |
| vocoder.load_model(args.voc_model_fpath) | |
| model_fpath = args.voc_model_fpath | |
| # Synthesize the waveform | |
| if not vocoder.is_loaded(): | |
| print("Loading the vocoder %s... " % model_fpath) | |
| start = time.time() | |
| vocoder.load_model(model_fpath) | |
| print("Done (%dms)." % int(1000 * (time.time()- start)), "append") | |
| current_vocoder_fpath= model_fpath | |
| def vocoder_progress(i, seq_len, b_size, gen_rate): | |
| real_time_factor = (gen_rate / Synthesizer.sample_rate) * 1000 | |
| line = "Waveform generation: %d/%d (batch size: %d, rate: %.1fkHz - %.2fx real time)" \ | |
| % (i * b_size, seq_len * b_size, b_size, gen_rate, real_time_factor) | |
| print(line, "overwrite") | |
| # Synthesizing the waveform is fairly straightforward. Remember that the longer the | |
| # spectrogram, the more time-efficient the vocoder. | |
| if current_vocoder_fpath is not None: | |
| print("") | |
| generated_wav = vocoder.infer_waveform(spec, progress_callback=vocoder_progress) | |
| else: | |
| print("Waveform generation with Griffin-Lim... ") | |
| generated_wav = Synthesizer.griffin_lim(spec) | |
| print(" Done!", "append") | |
| ## Post-generation | |
| # There's a bug with sounddevice that makes the audio cut one second earlier, so we | |
| # pad it. | |
| generated_wav = np.pad(generated_wav, (0, Synthesizer.sample_rate), mode="constant") | |
| # Add breaks | |
| b_ends = np.cumsum(np.array(breaks) * Synthesizer.hparams.hop_size) | |
| b_starts = np.concatenate(([0], b_ends[:-1])) | |
| wavs = [generated_wav[start:end] for start, end, in zip(b_starts, b_ends)] | |
| breaks = [np.zeros(int(0.15 * Synthesizer.sample_rate))] * len(breaks) | |
| generated_wav = np.concatenate([i for w, b in zip(wavs, breaks) for i in (w, b)]) | |
| # Trim excess silences to compensate for gaps in spectrograms (issue #53) | |
| generated_wav = encoder.preprocess_wav(generated_wav) | |
| return generated_wav | |
| def save_on_disk(generated_wav,sample_rate): | |
| # Save it on the disk | |
| filename = "cloned_voice.wav" | |
| print(generated_wav.dtype) | |
| #OUT=os.environ['OUT_PATH'] | |
| # Returns `None` if key doesn't exist | |
| #OUT=os.environ.get('OUT_PATH') | |
| #result = os.path.join(OUT, filename) | |
| result = filename | |
| print(" > Saving output to {}".format(result)) | |
| sf.write(result, generated_wav.astype(np.float32), sample_rate) | |
| print("\nSaved output as %s\n\n" % result) | |
| return result | |
| def play_audio(generated_wav,sample_rate): | |
| # Play the audio (non-blocking) | |
| if not args.no_sound: | |
| try: | |
| sd.stop() | |
| sd.play(generated_wav, sample_rate) | |
| except sd.PortAudioError as e: | |
| print("\nCaught exception: %s" % repr(e)) | |
| print("Continuing without audio playback. Suppress this message with the \"--no_sound\" flag.\n") | |
| except: | |
| raise | |
| def clean_memory(): | |
| import gc | |
| #import GPUtil | |
| # To see memory usage | |
| print('Before clean ') | |
| #GPUtil.showUtilization() | |
| #cleaning memory 1 | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| time.sleep(2) | |
| print('After Clean GPU') | |
| #GPUtil.showUtilization() | |
| def clone_voice(in_fpath, text): | |
| try: | |
| speaker_name = "output" | |
| # Compute embedding | |
| embed=compute_embedding(in_fpath) | |
| print("Created the embedding") | |
| # Generating the spectrogram | |
| spec, breaks, sample_rate = create_spectrogram(text,embed) | |
| current_generated = (speaker_name, spec, breaks) | |
| print("Created the mel spectrogram") | |
| # Create waveform | |
| generated_wav=generate_waveform(current_generated) | |
| print("Created the the waveform ") | |
| # Save it on the disk | |
| save_on_disk(generated_wav,sample_rate) | |
| #Play the audio | |
| #play_audio(generated_wav,sample_rate) | |
| return | |
| except Exception as e: | |
| print("Caught exception: %s" % repr(e)) | |
| print("Restarting\n") | |
| # Set environment variables | |
| home_dir = os.getcwd() | |
| OUT_PATH=os.path.join(home_dir, "out/") | |
| os.environ['OUT_PATH'] = OUT_PATH | |
| # create output path | |
| os.makedirs(OUT_PATH, exist_ok=True) | |
| USE_CUDA = torch.cuda.is_available() | |
| os.system('pip install -q pydub ffmpeg-normalize') | |
| CONFIG_SE_PATH = "config_se.json" | |
| CHECKPOINT_SE_PATH = "SE_checkpoint.pth.tar" | |
| def greet(Text,Voicetoclone ,input_mic=None): | |
| text= "%s" % (Text) | |
| #reference_files= "%s" % (Voicetoclone) | |
| clean_memory() | |
| print(text,len(text),type(text)) | |
| print(Voicetoclone,type(Voicetoclone)) | |
| if len(text) == 0 : | |
| print("Please add text to the program") | |
| Text="Please add text to the program, thank you." | |
| is_no_text=True | |
| else: | |
| is_no_text=False | |
| if Voicetoclone==None and input_mic==None: | |
| print("There is no input audio") | |
| Text="Please add audio input, to the program, thank you." | |
| Voicetoclone='trump.mp3' | |
| if is_no_text: | |
| Text="Please add text and audio, to the program, thank you." | |
| if input_mic != "" and input_mic != None : | |
| # Get the wav file from the microphone | |
| print('The value of MIC IS :',input_mic,type(input_mic)) | |
| Voicetoclone= input_mic | |
| text= "%s" % (Text) | |
| reference_files= Voicetoclone | |
| print("path url") | |
| print(Voicetoclone) | |
| sample= str(Voicetoclone) | |
| os.environ['sample'] = sample | |
| size= len(reference_files)*sys.getsizeof(reference_files) | |
| size2= size / 1000000 | |
| if (size2 > 0.012) or len(text)>2000: | |
| message="File is greater than 30mb or Text inserted is longer than 2000 characters. Please re-try with smaller sizes." | |
| print(message) | |
| raise SystemExit("File is greater than 30mb. Please re-try or Text inserted is longer than 2000 characters. Please re-try with smaller sizes.") | |
| else: | |
| env_var = 'sample' | |
| if env_var in os.environ: | |
| print(f'{env_var} value is {os.environ[env_var]}') | |
| else: | |
| print(f'{env_var} does not exist') | |
| #os.system(f'ffmpeg-normalize {os.environ[env_var]} -nt rms -t=-27 -o {os.environ[env_var]} -ar 16000 -f') | |
| in_fpath = Path(Voicetoclone) | |
| #in_fpath= in_fpath.replace("\"", "").replace("\'", "") | |
| out_path=clone_voice(in_fpath, text) | |
| print(" > text: {}".format(text)) | |
| print("Generated Audio") | |
| return "cloned_voice.wav" | |
| demo = gr.Interface( | |
| fn=greet, | |
| inputs=[gr.inputs.Textbox(label='What would you like the voice to say? (max. 2000 characters per request)'), | |
| gr.Audio( | |
| type="filepath", | |
| source="upload", | |
| label='Please upload a voice to clone (max. 30mb)'), | |
| gr.inputs.Audio( | |
| source="microphone", | |
| label='or record', | |
| type="filepath", | |
| optional=True) | |
| ], | |
| outputs="audio", | |
| title = 'Clone Your Voice', | |
| description = 'A simple application that Clone Your Voice. Wait one minute to process.', | |
| article = | |
| '''<div> | |
| <p style="text-align: center"> All you need to do is record your voice, type what you want be say | |
| ,then wait for compiling. After that click on Play/Pause for listen the audio. The audio is saved in an wav format. | |
| For more information visit <a href="https://ruslanmv.com/">ruslanmv.com</a> | |
| </p> | |
| </div>''', | |
| examples = [["I am the cloned version of Donald Trump. Well. I think what's happening to this country is unbelievably bad. We're no longer a respected country","trump.mp3","trump.mp3"], | |
| ["I am the cloned version of Elon Musk. Persistence is very important. You should not give up unless you are forced to give up.","musk.mp3","musk.mp3"] #, | |
| # ["I am the cloned version of Elizabeth. It has always been easy to hate and destroy. To build and to cherish is much more difficult." ,"queen.mp3","queen.mp3"] | |
| ] | |
| ) | |
| demo.launch() |