First commit
Browse files- .gitignore +2 -1
- app/services/chat_service.py +96 -38
- pyproject.toml +1 -1
- requirements.txt +1 -1
.gitignore
CHANGED
|
@@ -33,4 +33,5 @@ Thumbs.db
|
|
| 33 |
.faiss/
|
| 34 |
/backup
|
| 35 |
copy *.*
|
| 36 |
-
* copy.*
|
|
|
|
|
|
| 33 |
.faiss/
|
| 34 |
/backup
|
| 35 |
copy *.*
|
| 36 |
+
* copy.*
|
| 37 |
+
* copy *.py
|
app/services/chat_service.py
CHANGED
|
@@ -6,10 +6,10 @@ import os
|
|
| 6 |
import re
|
| 7 |
import threading
|
| 8 |
from pathlib import Path
|
| 9 |
-
from typing import List, Tuple, Dict, Optional
|
| 10 |
|
| 11 |
from ..core.config import Settings
|
| 12 |
-
from ..core.inference.client import
|
| 13 |
from ..core.rag.retriever import Retriever
|
| 14 |
|
| 15 |
logger = logging.getLogger(__name__)
|
|
@@ -33,11 +33,18 @@ STOP_SEQS: List[str] = [
|
|
| 33 |
"\nUser:", "User:", "\nAssistant:", "Assistant:"
|
| 34 |
]
|
| 35 |
|
|
|
|
| 36 |
# Thread-safe singleton retriever
|
|
|
|
| 37 |
_retriever_instance: Optional[Retriever] = None
|
| 38 |
_retriever_lock = threading.Lock()
|
| 39 |
|
|
|
|
| 40 |
def get_retriever(settings: Settings) -> Optional[Retriever]:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
global _retriever_instance
|
| 42 |
if _retriever_instance is not None:
|
| 43 |
return _retriever_instance
|
|
@@ -58,16 +65,19 @@ def get_retriever(settings: Settings) -> Optional[Retriever]:
|
|
| 58 |
_retriever_instance = None
|
| 59 |
return _retriever_instance
|
| 60 |
|
|
|
|
| 61 |
# ---------- anti-repetition / anti-label helpers ----------
|
| 62 |
_SENT_SPLIT = re.compile(r'(?<=[\.\!\?])\s+')
|
| 63 |
_NORM = re.compile(r'[^a-z0-9\s]+')
|
| 64 |
|
|
|
|
| 65 |
def _norm_sentence(s: str) -> str:
|
| 66 |
s = s.lower().strip()
|
| 67 |
s = _NORM.sub(' ', s)
|
| 68 |
s = re.sub(r'\s+', ' ', s)
|
| 69 |
return s
|
| 70 |
|
|
|
|
| 71 |
def _jaccard(a: str, b: str) -> float:
|
| 72 |
ta = set(a.split())
|
| 73 |
tb = set(b.split())
|
|
@@ -75,6 +85,7 @@ def _jaccard(a: str, b: str) -> float:
|
|
| 75 |
return 0.0
|
| 76 |
return len(ta & tb) / max(1, len(ta | tb))
|
| 77 |
|
|
|
|
| 78 |
def _squash_repetition(text: str, max_sentences: int = 4, sim_threshold: float = 0.88) -> str:
|
| 79 |
t = re.sub(r'\s+', ' ', text).strip()
|
| 80 |
if not t:
|
|
@@ -94,10 +105,12 @@ def _squash_repetition(text: str, max_sentences: int = 4, sim_threshold: float =
|
|
| 94 |
break
|
| 95 |
return ' '.join(out).strip()
|
| 96 |
|
|
|
|
| 97 |
# Strip common label patterns
|
| 98 |
_LABEL_PREFIX = re.compile(r'^\s*(?:Answer:|A:)\s*', re.IGNORECASE)
|
| 99 |
_LABEL_INLINE_Q = re.compile(r'\s*(?:Question:|Q:)\s*$', re.IGNORECASE)
|
| 100 |
|
|
|
|
| 101 |
def _strip_labels(text: str) -> str:
|
| 102 |
s = _LABEL_PREFIX.sub('', text)
|
| 103 |
# If the model tries to end with "Question:" remove that tail prompt
|
|
@@ -106,6 +119,7 @@ def _strip_labels(text: str) -> str:
|
|
| 106 |
s = re.sub(r'\b(?:Answer:|A:)\s*', '', s, flags=re.IGNORECASE)
|
| 107 |
return s.strip()
|
| 108 |
|
|
|
|
| 109 |
# ---------- RAG utilities (ranking & snippets) ----------
|
| 110 |
_ALIAS_TABLE: Dict[str, List[str]] = {
|
| 111 |
"matrixhub": ["matrix hub", "hub api", "catalog", "registry", "cas"],
|
|
@@ -114,9 +128,11 @@ _ALIAS_TABLE: Dict[str, List[str]] = {
|
|
| 114 |
}
|
| 115 |
_WORD_RE = re.compile(r"[A-Za-z0-9_]+")
|
| 116 |
|
|
|
|
| 117 |
def _normalize(text: str) -> List[str]:
|
| 118 |
return [t.lower() for t in _WORD_RE.findall(text)]
|
| 119 |
|
|
|
|
| 120 |
def _expand_query(q: str) -> str:
|
| 121 |
ql = q.lower()
|
| 122 |
extras: List[str] = []
|
|
@@ -127,6 +143,7 @@ def _expand_query(q: str) -> str:
|
|
| 127 |
return q + " | " + " ".join(sorted(set(extras)))
|
| 128 |
return q
|
| 129 |
|
|
|
|
| 130 |
def _keyword_overlap_score(query: str, text: str) -> float:
|
| 131 |
q_tokens = set(_normalize(query))
|
| 132 |
d_tokens = set(_normalize(text))
|
|
@@ -136,6 +153,7 @@ def _keyword_overlap_score(query: str, text: str) -> float:
|
|
| 136 |
union = len(q_tokens | d_tokens)
|
| 137 |
return inter / max(1, union)
|
| 138 |
|
|
|
|
| 139 |
def _domain_boost(text: str) -> float:
|
| 140 |
t = text.lower()
|
| 141 |
boost = 0.0
|
|
@@ -144,6 +162,7 @@ def _domain_boost(text: str) -> float:
|
|
| 144 |
boost += 0.05
|
| 145 |
return min(boost, 0.25)
|
| 146 |
|
|
|
|
| 147 |
def _best_paragraphs(text: str, query: str, max_chars: int = 700) -> str:
|
| 148 |
paras = [p.strip() for p in re.split(r"\n\s*\n", text) if p.strip()]
|
| 149 |
if not paras:
|
|
@@ -161,6 +180,7 @@ def _best_paragraphs(text: str, query: str, max_chars: int = 700) -> str:
|
|
| 161 |
break
|
| 162 |
return "\n".join(picked)
|
| 163 |
|
|
|
|
| 164 |
def _cross_encoder_scores(model: Optional["CrossEncoder"], query: str, docs: List[Dict], max_pairs: int = 50) -> Optional[List[float]]:
|
| 165 |
if not model:
|
| 166 |
return None
|
|
@@ -171,6 +191,7 @@ def _cross_encoder_scores(model: Optional["CrossEncoder"], query: str, docs: Lis
|
|
| 171 |
logger.warning("Cross-encoder scoring failed; continuing without it (%s)", e)
|
| 172 |
return None
|
| 173 |
|
|
|
|
| 174 |
def _rerank_docs(docs: List[Dict], query: str, k_final: int, reranker: Optional["CrossEncoder"] = None) -> List[Dict]:
|
| 175 |
if not docs:
|
| 176 |
return []
|
|
@@ -203,6 +224,7 @@ def _rerank_docs(docs: List[Dict], query: str, k_final: int, reranker: Optional[
|
|
| 203 |
merged.sort(key=lambda x: x[0], reverse=True)
|
| 204 |
return [d for _s, d in merged[:k_final]]
|
| 205 |
|
|
|
|
| 206 |
def _build_context_from_docs(docs: List[Dict], query: str, max_blocks: int = 4) -> Tuple[str, List[str]]:
|
| 207 |
blocks: List[str] = []
|
| 208 |
sources: List[str] = []
|
|
@@ -216,22 +238,33 @@ def _build_context_from_docs(docs: List[Dict], query: str, max_blocks: int = 4)
|
|
| 216 |
prelude = "CONTEXT (use only these facts; if missing, say you don't know):"
|
| 217 |
return prelude + "\n\n" + "\n\n".join(blocks), sources
|
| 218 |
|
|
|
|
| 219 |
# ----------------------------
|
| 220 |
# Service
|
| 221 |
# ----------------------------
|
| 222 |
class ChatService:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
def __init__(self, settings: Settings):
|
| 224 |
self.settings = settings
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 233 |
self.retriever = get_retriever(settings)
|
| 234 |
|
|
|
|
| 235 |
self.reranker = None
|
| 236 |
use_rerank = os.getenv("RAG_RERANK", "true").lower() in ("1", "true", "yes")
|
| 237 |
if use_rerank and CrossEncoder is not None:
|
|
@@ -272,44 +305,69 @@ class ChatService:
|
|
| 272 |
|
| 273 |
# ---------- Non-stream ----------
|
| 274 |
def answer_with_sources(self, query: str) -> Tuple[str, List[str]]:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 275 |
user_msg, sources = self._augment(query)
|
| 276 |
-
|
| 277 |
-
SYSTEM_PROMPT,
|
| 278 |
-
user_msg,
|
| 279 |
-
|
|
|
|
|
|
|
| 280 |
temperature=self.settings.model.temperature,
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
presence_penalty=0.0,
|
| 284 |
)
|
|
|
|
| 285 |
text = _strip_labels(_squash_repetition(text, max_sentences=4, sim_threshold=0.88))
|
| 286 |
return text, sources
|
| 287 |
|
| 288 |
# ---------- Stream ----------
|
| 289 |
-
def stream_answer(self, query: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 290 |
user_msg, _ = self._augment(query)
|
| 291 |
-
|
| 292 |
-
SYSTEM_PROMPT,
|
| 293 |
-
user_msg,
|
| 294 |
-
|
|
|
|
|
|
|
| 295 |
temperature=self.settings.model.temperature,
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
presence_penalty=0.0,
|
| 299 |
)
|
| 300 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 301 |
buf = ""
|
| 302 |
emitted = ""
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
import re
|
| 7 |
import threading
|
| 8 |
from pathlib import Path
|
| 9 |
+
from typing import List, Tuple, Dict, Optional, Iterable, Generator
|
| 10 |
|
| 11 |
from ..core.config import Settings
|
| 12 |
+
from ..core.inference.client import ChatClient # ← multi-provider cascade (GROQ→Gemini→HF)
|
| 13 |
from ..core.rag.retriever import Retriever
|
| 14 |
|
| 15 |
logger = logging.getLogger(__name__)
|
|
|
|
| 33 |
"\nUser:", "User:", "\nAssistant:", "Assistant:"
|
| 34 |
]
|
| 35 |
|
| 36 |
+
# ----------------------------
|
| 37 |
# Thread-safe singleton retriever
|
| 38 |
+
# ----------------------------
|
| 39 |
_retriever_instance: Optional[Retriever] = None
|
| 40 |
_retriever_lock = threading.Lock()
|
| 41 |
|
| 42 |
+
|
| 43 |
def get_retriever(settings: Settings) -> Optional[Retriever]:
|
| 44 |
+
"""
|
| 45 |
+
Initialize and cache the Retriever once (thread-safe).
|
| 46 |
+
If no KB is present, returns None and logs that we run LLM-only.
|
| 47 |
+
"""
|
| 48 |
global _retriever_instance
|
| 49 |
if _retriever_instance is not None:
|
| 50 |
return _retriever_instance
|
|
|
|
| 65 |
_retriever_instance = None
|
| 66 |
return _retriever_instance
|
| 67 |
|
| 68 |
+
|
| 69 |
# ---------- anti-repetition / anti-label helpers ----------
|
| 70 |
_SENT_SPLIT = re.compile(r'(?<=[\.\!\?])\s+')
|
| 71 |
_NORM = re.compile(r'[^a-z0-9\s]+')
|
| 72 |
|
| 73 |
+
|
| 74 |
def _norm_sentence(s: str) -> str:
|
| 75 |
s = s.lower().strip()
|
| 76 |
s = _NORM.sub(' ', s)
|
| 77 |
s = re.sub(r'\s+', ' ', s)
|
| 78 |
return s
|
| 79 |
|
| 80 |
+
|
| 81 |
def _jaccard(a: str, b: str) -> float:
|
| 82 |
ta = set(a.split())
|
| 83 |
tb = set(b.split())
|
|
|
|
| 85 |
return 0.0
|
| 86 |
return len(ta & tb) / max(1, len(ta | tb))
|
| 87 |
|
| 88 |
+
|
| 89 |
def _squash_repetition(text: str, max_sentences: int = 4, sim_threshold: float = 0.88) -> str:
|
| 90 |
t = re.sub(r'\s+', ' ', text).strip()
|
| 91 |
if not t:
|
|
|
|
| 105 |
break
|
| 106 |
return ' '.join(out).strip()
|
| 107 |
|
| 108 |
+
|
| 109 |
# Strip common label patterns
|
| 110 |
_LABEL_PREFIX = re.compile(r'^\s*(?:Answer:|A:)\s*', re.IGNORECASE)
|
| 111 |
_LABEL_INLINE_Q = re.compile(r'\s*(?:Question:|Q:)\s*$', re.IGNORECASE)
|
| 112 |
|
| 113 |
+
|
| 114 |
def _strip_labels(text: str) -> str:
|
| 115 |
s = _LABEL_PREFIX.sub('', text)
|
| 116 |
# If the model tries to end with "Question:" remove that tail prompt
|
|
|
|
| 119 |
s = re.sub(r'\b(?:Answer:|A:)\s*', '', s, flags=re.IGNORECASE)
|
| 120 |
return s.strip()
|
| 121 |
|
| 122 |
+
|
| 123 |
# ---------- RAG utilities (ranking & snippets) ----------
|
| 124 |
_ALIAS_TABLE: Dict[str, List[str]] = {
|
| 125 |
"matrixhub": ["matrix hub", "hub api", "catalog", "registry", "cas"],
|
|
|
|
| 128 |
}
|
| 129 |
_WORD_RE = re.compile(r"[A-Za-z0-9_]+")
|
| 130 |
|
| 131 |
+
|
| 132 |
def _normalize(text: str) -> List[str]:
|
| 133 |
return [t.lower() for t in _WORD_RE.findall(text)]
|
| 134 |
|
| 135 |
+
|
| 136 |
def _expand_query(q: str) -> str:
|
| 137 |
ql = q.lower()
|
| 138 |
extras: List[str] = []
|
|
|
|
| 143 |
return q + " | " + " ".join(sorted(set(extras)))
|
| 144 |
return q
|
| 145 |
|
| 146 |
+
|
| 147 |
def _keyword_overlap_score(query: str, text: str) -> float:
|
| 148 |
q_tokens = set(_normalize(query))
|
| 149 |
d_tokens = set(_normalize(text))
|
|
|
|
| 153 |
union = len(q_tokens | d_tokens)
|
| 154 |
return inter / max(1, union)
|
| 155 |
|
| 156 |
+
|
| 157 |
def _domain_boost(text: str) -> float:
|
| 158 |
t = text.lower()
|
| 159 |
boost = 0.0
|
|
|
|
| 162 |
boost += 0.05
|
| 163 |
return min(boost, 0.25)
|
| 164 |
|
| 165 |
+
|
| 166 |
def _best_paragraphs(text: str, query: str, max_chars: int = 700) -> str:
|
| 167 |
paras = [p.strip() for p in re.split(r"\n\s*\n", text) if p.strip()]
|
| 168 |
if not paras:
|
|
|
|
| 180 |
break
|
| 181 |
return "\n".join(picked)
|
| 182 |
|
| 183 |
+
|
| 184 |
def _cross_encoder_scores(model: Optional["CrossEncoder"], query: str, docs: List[Dict], max_pairs: int = 50) -> Optional[List[float]]:
|
| 185 |
if not model:
|
| 186 |
return None
|
|
|
|
| 191 |
logger.warning("Cross-encoder scoring failed; continuing without it (%s)", e)
|
| 192 |
return None
|
| 193 |
|
| 194 |
+
|
| 195 |
def _rerank_docs(docs: List[Dict], query: str, k_final: int, reranker: Optional["CrossEncoder"] = None) -> List[Dict]:
|
| 196 |
if not docs:
|
| 197 |
return []
|
|
|
|
| 224 |
merged.sort(key=lambda x: x[0], reverse=True)
|
| 225 |
return [d for _s, d in merged[:k_final]]
|
| 226 |
|
| 227 |
+
|
| 228 |
def _build_context_from_docs(docs: List[Dict], query: str, max_blocks: int = 4) -> Tuple[str, List[str]]:
|
| 229 |
blocks: List[str] = []
|
| 230 |
sources: List[str] = []
|
|
|
|
| 238 |
prelude = "CONTEXT (use only these facts; if missing, say you don't know):"
|
| 239 |
return prelude + "\n\n" + "\n\n".join(blocks), sources
|
| 240 |
|
| 241 |
+
|
| 242 |
# ----------------------------
|
| 243 |
# Service
|
| 244 |
# ----------------------------
|
| 245 |
class ChatService:
|
| 246 |
+
"""
|
| 247 |
+
High-level Q&A service with optional RAG. Uses the multi-provider ChatClient,
|
| 248 |
+
honoring provider_order from configs/settings.yaml (e.g., groq → gemini → router).
|
| 249 |
+
"""
|
| 250 |
+
|
| 251 |
def __init__(self, settings: Settings):
|
| 252 |
self.settings = settings
|
| 253 |
+
|
| 254 |
+
# Log backend + provider order for traceability
|
| 255 |
+
try:
|
| 256 |
+
order = getattr(settings, "provider_order", ["router"])
|
| 257 |
+
logger.info("Chat backend=%s | Provider order=%s", settings.chat_backend, order)
|
| 258 |
+
except Exception:
|
| 259 |
+
logger.info("Chat backend=%s", getattr(settings, "chat_backend", "unknown"))
|
| 260 |
+
|
| 261 |
+
# Use the multi-provider cascade: GROQ → Gemini → HF Router
|
| 262 |
+
self.client = ChatClient(settings)
|
| 263 |
+
|
| 264 |
+
# RAG components
|
| 265 |
self.retriever = get_retriever(settings)
|
| 266 |
|
| 267 |
+
# Optional cross-encoder reranker
|
| 268 |
self.reranker = None
|
| 269 |
use_rerank = os.getenv("RAG_RERANK", "true").lower() in ("1", "true", "yes")
|
| 270 |
if use_rerank and CrossEncoder is not None:
|
|
|
|
| 305 |
|
| 306 |
# ---------- Non-stream ----------
|
| 307 |
def answer_with_sources(self, query: str) -> Tuple[str, List[str]]:
|
| 308 |
+
"""
|
| 309 |
+
Returns a concise answer and the list of source identifiers (if any).
|
| 310 |
+
Uses the cascade in non-streaming mode (always returns a string).
|
| 311 |
+
"""
|
| 312 |
user_msg, sources = self._augment(query)
|
| 313 |
+
messages = [
|
| 314 |
+
{"role": "system", "content": SYSTEM_PROMPT},
|
| 315 |
+
{"role": "user", "content": user_msg},
|
| 316 |
+
]
|
| 317 |
+
text = self.client.chat(
|
| 318 |
+
messages,
|
| 319 |
temperature=self.settings.model.temperature,
|
| 320 |
+
max_new_tokens=self.settings.model.max_new_tokens,
|
| 321 |
+
stream=False,
|
|
|
|
| 322 |
)
|
| 323 |
+
# Post-process for brevity and cleanliness
|
| 324 |
text = _strip_labels(_squash_repetition(text, max_sentences=4, sim_threshold=0.88))
|
| 325 |
return text, sources
|
| 326 |
|
| 327 |
# ---------- Stream ----------
|
| 328 |
+
def stream_answer(self, query: str) -> Iterable[str]:
|
| 329 |
+
"""
|
| 330 |
+
Yields chunks of text as they are produced.
|
| 331 |
+
On GROQ, this is true token streaming; on Gemini/HF, it may yield once.
|
| 332 |
+
"""
|
| 333 |
user_msg, _ = self._augment(query)
|
| 334 |
+
messages = [
|
| 335 |
+
{"role": "system", "content": SYSTEM_PROMPT},
|
| 336 |
+
{"role": "user", "content": user_msg},
|
| 337 |
+
]
|
| 338 |
+
raw = self.client.chat(
|
| 339 |
+
messages,
|
| 340 |
temperature=self.settings.model.temperature,
|
| 341 |
+
max_new_tokens=self.settings.model.max_new_tokens,
|
| 342 |
+
stream=True,
|
|
|
|
| 343 |
)
|
| 344 |
|
| 345 |
+
# Normalize to a generator of strings
|
| 346 |
+
def _iter_chunks(gen_or_text: Generator[str, None, None] | str) -> Generator[str, None, None]:
|
| 347 |
+
if isinstance(gen_or_text, str):
|
| 348 |
+
yield gen_or_text
|
| 349 |
+
else:
|
| 350 |
+
for chunk in gen_or_text:
|
| 351 |
+
if chunk:
|
| 352 |
+
yield chunk
|
| 353 |
+
|
| 354 |
buf = ""
|
| 355 |
emitted = ""
|
| 356 |
+
try:
|
| 357 |
+
for token in _iter_chunks(raw):
|
| 358 |
+
buf += token
|
| 359 |
+
cleaned = _squash_repetition(buf, max_sentences=4, sim_threshold=0.88)
|
| 360 |
+
cleaned = _strip_labels(cleaned)
|
| 361 |
+
if len(cleaned) < len(emitted):
|
| 362 |
+
# Cleaning shortened text; wait for more tokens
|
| 363 |
+
continue
|
| 364 |
+
delta = cleaned[len(emitted):]
|
| 365 |
+
if delta:
|
| 366 |
+
emitted = cleaned
|
| 367 |
+
yield delta
|
| 368 |
+
except Exception as e:
|
| 369 |
+
logger.error("Streaming error: %s", e)
|
| 370 |
+
# Best-effort final flush
|
| 371 |
+
final = _strip_labels(_squash_repetition(buf, max_sentences=4, sim_threshold=0.88)).strip()
|
| 372 |
+
if final and final != emitted:
|
| 373 |
+
yield final[len(emitted):]
|
pyproject.toml
CHANGED
|
@@ -11,7 +11,7 @@ requires-python = ">=3.11"
|
|
| 11 |
license = { text = "Apache-2.0" }
|
| 12 |
dependencies = [
|
| 13 |
"fastapi==0.111.0",
|
| 14 |
-
"groq==0.
|
| 15 |
"uvicorn[standard]==0.29.0",
|
| 16 |
"httpx==0.28.1",
|
| 17 |
"pydantic==2.7.1",
|
|
|
|
| 11 |
license = { text = "Apache-2.0" }
|
| 12 |
dependencies = [
|
| 13 |
"fastapi==0.111.0",
|
| 14 |
+
"groq==0.32.0",
|
| 15 |
"uvicorn[standard]==0.29.0",
|
| 16 |
"httpx==0.28.1",
|
| 17 |
"pydantic==2.7.1",
|
requirements.txt
CHANGED
|
@@ -20,7 +20,7 @@ mypy
|
|
| 20 |
pytest-asyncio
|
| 21 |
|
| 22 |
# Additional libraries for extended functionality
|
| 23 |
-
groq==0.
|
| 24 |
python-dotenv==1.0.1
|
| 25 |
google-genai==1.39.1
|
| 26 |
|
|
|
|
| 20 |
pytest-asyncio
|
| 21 |
|
| 22 |
# Additional libraries for extended functionality
|
| 23 |
+
groq==0.32.0
|
| 24 |
python-dotenv==1.0.1
|
| 25 |
google-genai==1.39.1
|
| 26 |
|