Upload 20 files
Browse files- backbone/base.py +29 -0
- backbone/resnet101.py +37 -0
- backbone/resnet18.py +37 -0
- backbone/resnet50.py +37 -0
- config/config.py +37 -0
- config/eval_config.py +20 -0
- config/train_config.py +71 -0
- dataset/base.py +155 -0
- dataset/coco2017.py +212 -0
- dataset/coco2017_animal.py +205 -0
- dataset/coco2017_car.py +201 -0
- dataset/coco2017_person.py +201 -0
- dataset/voc2007.py +168 -0
- dataset/voc2007_cat_dog.py +171 -0
- extension/functional.py +10 -0
- extension/lr_scheduler.py +23 -0
- models/MobileNetSSD_deploy.caffemodel +3 -0
- models/MobileNetSSD_deploy.prototxt.txt +1912 -0
- roi/pooler.py +45 -0
- rpn/region_proposal_network.py +169 -0
backbone/base.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Tuple, Type
|
| 2 |
+
|
| 3 |
+
from torch import nn
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class Base(object):
|
| 7 |
+
|
| 8 |
+
OPTIONS = ['resnet18', 'resnet50', 'resnet101']
|
| 9 |
+
|
| 10 |
+
@staticmethod
|
| 11 |
+
def from_name(name: str) -> Type['Base']:
|
| 12 |
+
if name == 'resnet18':
|
| 13 |
+
from backbone.resnet18 import ResNet18
|
| 14 |
+
return ResNet18
|
| 15 |
+
elif name == 'resnet50':
|
| 16 |
+
from backbone.resnet50 import ResNet50
|
| 17 |
+
return ResNet50
|
| 18 |
+
elif name == 'resnet101':
|
| 19 |
+
from backbone.resnet101 import ResNet101
|
| 20 |
+
return ResNet101
|
| 21 |
+
else:
|
| 22 |
+
raise ValueError
|
| 23 |
+
|
| 24 |
+
def __init__(self, pretrained: bool):
|
| 25 |
+
super().__init__()
|
| 26 |
+
self._pretrained = pretrained
|
| 27 |
+
|
| 28 |
+
def features(self) -> Tuple[nn.Module, nn.Module, int, int]:
|
| 29 |
+
raise NotImplementedError
|
backbone/resnet101.py
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Tuple
|
| 2 |
+
|
| 3 |
+
import torchvision
|
| 4 |
+
from torch import nn
|
| 5 |
+
|
| 6 |
+
import backbone.base
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class ResNet101(backbone.base.Base):
|
| 10 |
+
|
| 11 |
+
def __init__(self, pretrained: bool):
|
| 12 |
+
super().__init__(pretrained)
|
| 13 |
+
|
| 14 |
+
def features(self) -> Tuple[nn.Module, nn.Module, int, int]:
|
| 15 |
+
resnet101 = torchvision.models.resnet101(pretrained=self._pretrained)
|
| 16 |
+
|
| 17 |
+
# list(resnet101.children()) consists of following modules
|
| 18 |
+
# [0] = Conv2d, [1] = BatchNorm2d, [2] = ReLU,
|
| 19 |
+
# [3] = MaxPool2d, [4] = Sequential(Bottleneck...),
|
| 20 |
+
# [5] = Sequential(Bottleneck...),
|
| 21 |
+
# [6] = Sequential(Bottleneck...),
|
| 22 |
+
# [7] = Sequential(Bottleneck...),
|
| 23 |
+
# [8] = AvgPool2d, [9] = Linear
|
| 24 |
+
children = list(resnet101.children())
|
| 25 |
+
features = children[:-3]
|
| 26 |
+
num_features_out = 1024
|
| 27 |
+
|
| 28 |
+
hidden = children[-3]
|
| 29 |
+
num_hidden_out = 2048
|
| 30 |
+
|
| 31 |
+
for parameters in [feature.parameters() for i, feature in enumerate(features) if i <= 4]:
|
| 32 |
+
for parameter in parameters:
|
| 33 |
+
parameter.requires_grad = False
|
| 34 |
+
|
| 35 |
+
features = nn.Sequential(*features)
|
| 36 |
+
|
| 37 |
+
return features, hidden, num_features_out, num_hidden_out
|
backbone/resnet18.py
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Tuple
|
| 2 |
+
|
| 3 |
+
import torchvision
|
| 4 |
+
from torch import nn
|
| 5 |
+
|
| 6 |
+
import backbone.base
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class ResNet18(backbone.base.Base):
|
| 10 |
+
|
| 11 |
+
def __init__(self, pretrained: bool):
|
| 12 |
+
super().__init__(pretrained)
|
| 13 |
+
|
| 14 |
+
def features(self) -> Tuple[nn.Module, nn.Module, int, int]:
|
| 15 |
+
resnet18 = torchvision.models.resnet18(pretrained=self._pretrained)
|
| 16 |
+
|
| 17 |
+
# list(resnet18.children()) consists of following modules
|
| 18 |
+
# [0] = Conv2d, [1] = BatchNorm2d, [2] = ReLU,
|
| 19 |
+
# [3] = MaxPool2d, [4] = Sequential(Bottleneck...),
|
| 20 |
+
# [5] = Sequential(Bottleneck...),
|
| 21 |
+
# [6] = Sequential(Bottleneck...),
|
| 22 |
+
# [7] = Sequential(Bottleneck...),
|
| 23 |
+
# [8] = AvgPool2d, [9] = Linear
|
| 24 |
+
children = list(resnet18.children())
|
| 25 |
+
features = children[:-3]
|
| 26 |
+
num_features_out = 256
|
| 27 |
+
|
| 28 |
+
hidden = children[-3]
|
| 29 |
+
num_hidden_out = 512
|
| 30 |
+
|
| 31 |
+
for parameters in [feature.parameters() for i, feature in enumerate(features) if i <= 4]:
|
| 32 |
+
for parameter in parameters:
|
| 33 |
+
parameter.requires_grad = False
|
| 34 |
+
|
| 35 |
+
features = nn.Sequential(*features)
|
| 36 |
+
|
| 37 |
+
return features, hidden, num_features_out, num_hidden_out
|
backbone/resnet50.py
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Tuple
|
| 2 |
+
|
| 3 |
+
import torchvision
|
| 4 |
+
from torch import nn
|
| 5 |
+
|
| 6 |
+
import backbone.base
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class ResNet50(backbone.base.Base):
|
| 10 |
+
|
| 11 |
+
def __init__(self, pretrained: bool):
|
| 12 |
+
super().__init__(pretrained)
|
| 13 |
+
|
| 14 |
+
def features(self) -> Tuple[nn.Module, nn.Module, int, int]:
|
| 15 |
+
resnet50 = torchvision.models.resnet50(pretrained=self._pretrained)
|
| 16 |
+
|
| 17 |
+
# list(resnet50.children()) consists of following modules
|
| 18 |
+
# [0] = Conv2d, [1] = BatchNorm2d, [2] = ReLU,
|
| 19 |
+
# [3] = MaxPool2d, [4] = Sequential(Bottleneck...),
|
| 20 |
+
# [5] = Sequential(Bottleneck...),
|
| 21 |
+
# [6] = Sequential(Bottleneck...),
|
| 22 |
+
# [7] = Sequential(Bottleneck...),
|
| 23 |
+
# [8] = AvgPool2d, [9] = Linear
|
| 24 |
+
children = list(resnet50.children())
|
| 25 |
+
features = children[:-3]
|
| 26 |
+
num_features_out = 1024
|
| 27 |
+
|
| 28 |
+
hidden = children[-3]
|
| 29 |
+
num_hidden_out = 2048
|
| 30 |
+
|
| 31 |
+
for parameters in [feature.parameters() for i, feature in enumerate(features) if i <= 4]:
|
| 32 |
+
for parameter in parameters:
|
| 33 |
+
parameter.requires_grad = False
|
| 34 |
+
|
| 35 |
+
features = nn.Sequential(*features)
|
| 36 |
+
|
| 37 |
+
return features, hidden, num_features_out, num_hidden_out
|
config/config.py
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import ast
|
| 2 |
+
from typing import Tuple, List
|
| 3 |
+
|
| 4 |
+
from roi.pooler import Pooler
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class Config(object):
|
| 8 |
+
|
| 9 |
+
IMAGE_MIN_SIDE: float = 600.0
|
| 10 |
+
IMAGE_MAX_SIDE: float = 1000.0
|
| 11 |
+
|
| 12 |
+
ANCHOR_RATIOS: List[Tuple[int, int]] = [(1, 2), (1, 1), (2, 1)]
|
| 13 |
+
ANCHOR_SIZES: List[int] = [128, 256, 512]
|
| 14 |
+
POOLER_MODE: Pooler.Mode = Pooler.Mode.POOLING
|
| 15 |
+
|
| 16 |
+
@classmethod
|
| 17 |
+
def describe(cls):
|
| 18 |
+
text = '\nConfig:\n'
|
| 19 |
+
attrs = [attr for attr in dir(cls) if not callable(getattr(cls, attr)) and not attr.startswith('__')]
|
| 20 |
+
text += '\n'.join(['\t{:s} = {:s}'.format(attr, str(getattr(cls, attr))) for attr in attrs]) + '\n'
|
| 21 |
+
|
| 22 |
+
return text
|
| 23 |
+
|
| 24 |
+
@classmethod
|
| 25 |
+
def setup(cls, image_min_side: float = None, image_max_side: float = None,
|
| 26 |
+
anchor_ratios: List[Tuple[int, int]] = None, anchor_sizes: List[int] = None, pooler_mode: str = None):
|
| 27 |
+
if image_min_side is not None:
|
| 28 |
+
cls.IMAGE_MIN_SIDE = image_min_side
|
| 29 |
+
if image_max_side is not None:
|
| 30 |
+
cls.IMAGE_MAX_SIDE = image_max_side
|
| 31 |
+
|
| 32 |
+
if anchor_ratios is not None:
|
| 33 |
+
cls.ANCHOR_RATIOS = ast.literal_eval(anchor_ratios)
|
| 34 |
+
if anchor_sizes is not None:
|
| 35 |
+
cls.ANCHOR_SIZES = ast.literal_eval(anchor_sizes)
|
| 36 |
+
if pooler_mode is not None:
|
| 37 |
+
cls.POOLER_MODE = Pooler.Mode(pooler_mode)
|
config/eval_config.py
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, Tuple
|
| 2 |
+
|
| 3 |
+
from config.config import Config
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class EvalConfig(Config):
|
| 7 |
+
|
| 8 |
+
RPN_PRE_NMS_TOP_N: int = 6000
|
| 9 |
+
RPN_POST_NMS_TOP_N: int = 300
|
| 10 |
+
|
| 11 |
+
@classmethod
|
| 12 |
+
def setup(cls, image_min_side: float = None, image_max_side: float = None,
|
| 13 |
+
anchor_ratios: List[Tuple[int, int]] = None, anchor_sizes: List[int] = None, pooler_mode: str = None,
|
| 14 |
+
rpn_pre_nms_top_n: int = None, rpn_post_nms_top_n: int = None):
|
| 15 |
+
super().setup(image_min_side, image_max_side, anchor_ratios, anchor_sizes, pooler_mode)
|
| 16 |
+
|
| 17 |
+
if rpn_pre_nms_top_n is not None:
|
| 18 |
+
cls.RPN_PRE_NMS_TOP_N = rpn_pre_nms_top_n
|
| 19 |
+
if rpn_post_nms_top_n is not None:
|
| 20 |
+
cls.RPN_POST_NMS_TOP_N = rpn_post_nms_top_n
|
config/train_config.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import ast
|
| 2 |
+
from typing import List, Tuple
|
| 3 |
+
|
| 4 |
+
from config.config import Config
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class TrainConfig(Config):
|
| 8 |
+
|
| 9 |
+
RPN_PRE_NMS_TOP_N: int = 12000
|
| 10 |
+
RPN_POST_NMS_TOP_N: int = 2000
|
| 11 |
+
|
| 12 |
+
ANCHOR_SMOOTH_L1_LOSS_BETA: float = 1.0
|
| 13 |
+
PROPOSAL_SMOOTH_L1_LOSS_BETA: float = 1.0
|
| 14 |
+
|
| 15 |
+
BATCH_SIZE: int = 1
|
| 16 |
+
LEARNING_RATE: float = 0.001
|
| 17 |
+
MOMENTUM: float = 0.9
|
| 18 |
+
WEIGHT_DECAY: float = 0.0005
|
| 19 |
+
STEP_LR_SIZES: List[int] = [50000, 70000]
|
| 20 |
+
STEP_LR_GAMMA: float = 0.1
|
| 21 |
+
WARM_UP_FACTOR: float = 0.3333
|
| 22 |
+
WARM_UP_NUM_ITERS: int = 500
|
| 23 |
+
|
| 24 |
+
NUM_STEPS_TO_DISPLAY: int = 20
|
| 25 |
+
NUM_STEPS_TO_SNAPSHOT: int = 10000
|
| 26 |
+
NUM_STEPS_TO_FINISH: int = 90000
|
| 27 |
+
|
| 28 |
+
@classmethod
|
| 29 |
+
def setup(cls, image_min_side: float = None, image_max_side: float = None,
|
| 30 |
+
anchor_ratios: List[Tuple[int, int]] = None, anchor_sizes: List[int] = None, pooler_mode: str = None,
|
| 31 |
+
rpn_pre_nms_top_n: int = None, rpn_post_nms_top_n: int = None,
|
| 32 |
+
anchor_smooth_l1_loss_beta: float = None, proposal_smooth_l1_loss_beta: float = None,
|
| 33 |
+
batch_size: int = None, learning_rate: float = None, momentum: float = None, weight_decay: float = None,
|
| 34 |
+
step_lr_sizes: List[int] = None, step_lr_gamma: float = None,
|
| 35 |
+
warm_up_factor: float = None, warm_up_num_iters: int = None,
|
| 36 |
+
num_steps_to_display: int = None, num_steps_to_snapshot: int = None, num_steps_to_finish: int = None):
|
| 37 |
+
super().setup(image_min_side, image_max_side, anchor_ratios, anchor_sizes, pooler_mode)
|
| 38 |
+
|
| 39 |
+
if rpn_pre_nms_top_n is not None:
|
| 40 |
+
cls.RPN_PRE_NMS_TOP_N = rpn_pre_nms_top_n
|
| 41 |
+
if rpn_post_nms_top_n is not None:
|
| 42 |
+
cls.RPN_POST_NMS_TOP_N = rpn_post_nms_top_n
|
| 43 |
+
|
| 44 |
+
if anchor_smooth_l1_loss_beta is not None:
|
| 45 |
+
cls.ANCHOR_SMOOTH_L1_LOSS_BETA = anchor_smooth_l1_loss_beta
|
| 46 |
+
if proposal_smooth_l1_loss_beta is not None:
|
| 47 |
+
cls.PROPOSAL_SMOOTH_L1_LOSS_BETA = proposal_smooth_l1_loss_beta
|
| 48 |
+
|
| 49 |
+
if batch_size is not None:
|
| 50 |
+
cls.BATCH_SIZE = batch_size
|
| 51 |
+
if learning_rate is not None:
|
| 52 |
+
cls.LEARNING_RATE = learning_rate
|
| 53 |
+
if momentum is not None:
|
| 54 |
+
cls.MOMENTUM = momentum
|
| 55 |
+
if weight_decay is not None:
|
| 56 |
+
cls.WEIGHT_DECAY = weight_decay
|
| 57 |
+
if step_lr_sizes is not None:
|
| 58 |
+
cls.STEP_LR_SIZES = ast.literal_eval(step_lr_sizes)
|
| 59 |
+
if step_lr_gamma is not None:
|
| 60 |
+
cls.STEP_LR_GAMMA = step_lr_gamma
|
| 61 |
+
if warm_up_factor is not None:
|
| 62 |
+
cls.WARM_UP_FACTOR = warm_up_factor
|
| 63 |
+
if warm_up_num_iters is not None:
|
| 64 |
+
cls.WARM_UP_NUM_ITERS = warm_up_num_iters
|
| 65 |
+
|
| 66 |
+
if num_steps_to_display is not None:
|
| 67 |
+
cls.NUM_STEPS_TO_DISPLAY = num_steps_to_display
|
| 68 |
+
if num_steps_to_snapshot is not None:
|
| 69 |
+
cls.NUM_STEPS_TO_SNAPSHOT = num_steps_to_snapshot
|
| 70 |
+
if num_steps_to_finish is not None:
|
| 71 |
+
cls.NUM_STEPS_TO_FINISH = num_steps_to_finish
|
dataset/base.py
ADDED
|
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
from enum import Enum
|
| 3 |
+
from typing import Tuple, List, Type, Iterator
|
| 4 |
+
|
| 5 |
+
import PIL
|
| 6 |
+
import torch.utils.data.dataset
|
| 7 |
+
import torch.utils.data.sampler
|
| 8 |
+
from PIL import Image
|
| 9 |
+
from torch import Tensor
|
| 10 |
+
from torch.nn import functional as F
|
| 11 |
+
from torchvision.transforms import transforms
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class Base(torch.utils.data.dataset.Dataset):
|
| 15 |
+
|
| 16 |
+
class Mode(Enum):
|
| 17 |
+
TRAIN = 'train'
|
| 18 |
+
EVAL = 'eval'
|
| 19 |
+
|
| 20 |
+
OPTIONS = ['voc2007', 'coco2017', 'voc2007-cat-dog', 'coco2017-person', 'coco2017-car', 'coco2017-animal']
|
| 21 |
+
|
| 22 |
+
@staticmethod
|
| 23 |
+
def from_name(name: str) -> Type['Base']:
|
| 24 |
+
if name == 'voc2007':
|
| 25 |
+
from dataset.voc2007 import VOC2007
|
| 26 |
+
return VOC2007
|
| 27 |
+
elif name == 'coco2017':
|
| 28 |
+
from dataset.coco2017 import COCO2017
|
| 29 |
+
return COCO2017
|
| 30 |
+
elif name == 'voc2007-cat-dog':
|
| 31 |
+
from dataset.voc2007_cat_dog import VOC2007CatDog
|
| 32 |
+
return VOC2007CatDog
|
| 33 |
+
elif name == 'coco2017-person':
|
| 34 |
+
from dataset.coco2017_person import COCO2017Person
|
| 35 |
+
return COCO2017Person
|
| 36 |
+
elif name == 'coco2017-car':
|
| 37 |
+
from dataset.coco2017_car import COCO2017Car
|
| 38 |
+
return COCO2017Car
|
| 39 |
+
elif name == 'coco2017-animal':
|
| 40 |
+
from dataset.coco2017_animal import COCO2017Animal
|
| 41 |
+
return COCO2017Animal
|
| 42 |
+
else:
|
| 43 |
+
raise ValueError
|
| 44 |
+
|
| 45 |
+
def __init__(self, path_to_data_dir: str, mode: Mode, image_min_side: float, image_max_side: float):
|
| 46 |
+
self._path_to_data_dir = path_to_data_dir
|
| 47 |
+
self._mode = mode
|
| 48 |
+
self._image_min_side = image_min_side
|
| 49 |
+
self._image_max_side = image_max_side
|
| 50 |
+
|
| 51 |
+
def __len__(self) -> int:
|
| 52 |
+
raise NotImplementedError
|
| 53 |
+
|
| 54 |
+
def __getitem__(self, index: int) -> Tuple[str, Tensor, Tensor, Tensor, Tensor]:
|
| 55 |
+
raise NotImplementedError
|
| 56 |
+
|
| 57 |
+
def evaluate(self, path_to_results_dir: str, image_ids: List[str], bboxes: List[List[float]], classes: List[int], probs: List[float]) -> Tuple[float, str]:
|
| 58 |
+
raise NotImplementedError
|
| 59 |
+
|
| 60 |
+
def _write_results(self, path_to_results_dir: str, image_ids: List[str], bboxes: List[List[float]], classes: List[int], probs: List[float]):
|
| 61 |
+
raise NotImplementedError
|
| 62 |
+
|
| 63 |
+
@property
|
| 64 |
+
def image_ratios(self) -> List[float]:
|
| 65 |
+
raise NotImplementedError
|
| 66 |
+
|
| 67 |
+
@staticmethod
|
| 68 |
+
def num_classes() -> int:
|
| 69 |
+
raise NotImplementedError
|
| 70 |
+
|
| 71 |
+
@staticmethod
|
| 72 |
+
def preprocess(image: PIL.Image.Image, image_min_side: float, image_max_side: float) -> Tuple[Tensor, float]:
|
| 73 |
+
# resize according to the rules:
|
| 74 |
+
# 1. scale shorter side to IMAGE_MIN_SIDE
|
| 75 |
+
# 2. after scaling, if longer side > IMAGE_MAX_SIDE, scale longer side to IMAGE_MAX_SIDE
|
| 76 |
+
scale_for_shorter_side = image_min_side / min(image.width, image.height)
|
| 77 |
+
longer_side_after_scaling = max(image.width, image.height) * scale_for_shorter_side
|
| 78 |
+
scale_for_longer_side = (image_max_side / longer_side_after_scaling) if longer_side_after_scaling > image_max_side else 1
|
| 79 |
+
scale = scale_for_shorter_side * scale_for_longer_side
|
| 80 |
+
|
| 81 |
+
transform = transforms.Compose([
|
| 82 |
+
transforms.Resize((round(image.height * scale), round(image.width * scale))), # interpolation `BILINEAR` is applied by default
|
| 83 |
+
transforms.ToTensor(),
|
| 84 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 85 |
+
])
|
| 86 |
+
image = transform(image)
|
| 87 |
+
|
| 88 |
+
return image, scale
|
| 89 |
+
|
| 90 |
+
@staticmethod
|
| 91 |
+
def padding_collate_fn(batch: List[Tuple[str, Tensor, Tensor, Tensor, Tensor]]) -> Tuple[List[str], Tensor, Tensor, Tensor, Tensor]:
|
| 92 |
+
image_id_batch, image_batch, scale_batch, bboxes_batch, labels_batch = zip(*batch)
|
| 93 |
+
|
| 94 |
+
max_image_width = max([it.shape[2] for it in image_batch])
|
| 95 |
+
max_image_height = max([it.shape[1] for it in image_batch])
|
| 96 |
+
max_bboxes_length = max([len(it) for it in bboxes_batch])
|
| 97 |
+
max_labels_length = max([len(it) for it in labels_batch])
|
| 98 |
+
|
| 99 |
+
padded_image_batch = []
|
| 100 |
+
padded_bboxes_batch = []
|
| 101 |
+
padded_labels_batch = []
|
| 102 |
+
|
| 103 |
+
for image in image_batch:
|
| 104 |
+
padded_image = F.pad(input=image, pad=(0, max_image_width - image.shape[2], 0, max_image_height - image.shape[1])) # pad has format (left, right, top, bottom)
|
| 105 |
+
padded_image_batch.append(padded_image)
|
| 106 |
+
|
| 107 |
+
for bboxes in bboxes_batch:
|
| 108 |
+
padded_bboxes = torch.cat([bboxes, torch.zeros(max_bboxes_length - len(bboxes), 4).to(bboxes)])
|
| 109 |
+
padded_bboxes_batch.append(padded_bboxes)
|
| 110 |
+
|
| 111 |
+
for labels in labels_batch:
|
| 112 |
+
padded_labels = torch.cat([labels, torch.zeros(max_labels_length - len(labels)).to(labels)])
|
| 113 |
+
padded_labels_batch.append(padded_labels)
|
| 114 |
+
|
| 115 |
+
image_id_batch = list(image_id_batch)
|
| 116 |
+
padded_image_batch = torch.stack(padded_image_batch, dim=0)
|
| 117 |
+
scale_batch = torch.stack(scale_batch, dim=0)
|
| 118 |
+
padded_bboxes_batch = torch.stack(padded_bboxes_batch, dim=0)
|
| 119 |
+
padded_labels_batch = torch.stack(padded_labels_batch, dim=0)
|
| 120 |
+
|
| 121 |
+
return image_id_batch, padded_image_batch, scale_batch, padded_bboxes_batch, padded_labels_batch
|
| 122 |
+
|
| 123 |
+
class NearestRatioRandomSampler(torch.utils.data.sampler.Sampler):
|
| 124 |
+
|
| 125 |
+
def __init__(self, image_ratios: List[float], num_neighbors: int):
|
| 126 |
+
super().__init__(data_source=None)
|
| 127 |
+
self._image_ratios = image_ratios
|
| 128 |
+
self._num_neighbors = num_neighbors
|
| 129 |
+
|
| 130 |
+
def __len__(self) -> int:
|
| 131 |
+
return len(self._image_ratios)
|
| 132 |
+
|
| 133 |
+
def __iter__(self) -> Iterator[int]:
|
| 134 |
+
image_ratios = torch.tensor(self._image_ratios)
|
| 135 |
+
tall_indices = (image_ratios < 1).nonzero().view(-1)
|
| 136 |
+
fat_indices = (image_ratios >= 1).nonzero().view(-1)
|
| 137 |
+
|
| 138 |
+
tall_indices_length = len(tall_indices)
|
| 139 |
+
fat_indices_length = len(fat_indices)
|
| 140 |
+
|
| 141 |
+
tall_indices = tall_indices[torch.randperm(tall_indices_length)]
|
| 142 |
+
fat_indices = fat_indices[torch.randperm(fat_indices_length)]
|
| 143 |
+
|
| 144 |
+
num_tall_remainder = tall_indices_length % self._num_neighbors
|
| 145 |
+
num_fat_remainder = fat_indices_length % self._num_neighbors
|
| 146 |
+
|
| 147 |
+
tall_indices = tall_indices[:tall_indices_length - num_tall_remainder]
|
| 148 |
+
fat_indices = fat_indices[:fat_indices_length - num_fat_remainder]
|
| 149 |
+
|
| 150 |
+
tall_indices = tall_indices.view(-1, self._num_neighbors)
|
| 151 |
+
fat_indices = fat_indices.view(-1, self._num_neighbors)
|
| 152 |
+
merge_indices = torch.cat([tall_indices, fat_indices], dim=0)
|
| 153 |
+
merge_indices = merge_indices[torch.randperm(len(merge_indices))].view(-1)
|
| 154 |
+
|
| 155 |
+
return iter(merge_indices.tolist())
|
dataset/coco2017.py
ADDED
|
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
import pickle
|
| 4 |
+
import random
|
| 5 |
+
from typing import List, Tuple, Dict
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import torch.utils.data.dataset
|
| 9 |
+
from PIL import Image, ImageOps
|
| 10 |
+
from pycocotools.coco import COCO
|
| 11 |
+
from pycocotools.cocoeval import COCOeval
|
| 12 |
+
from torch import Tensor
|
| 13 |
+
from torchvision.datasets import CocoDetection
|
| 14 |
+
from tqdm import tqdm
|
| 15 |
+
|
| 16 |
+
from bbox import BBox
|
| 17 |
+
from dataset.base import Base
|
| 18 |
+
from io import StringIO
|
| 19 |
+
import sys
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class COCO2017(Base):
|
| 23 |
+
|
| 24 |
+
class Annotation(object):
|
| 25 |
+
class Object(object):
|
| 26 |
+
def __init__(self, bbox: BBox, label: int):
|
| 27 |
+
super().__init__()
|
| 28 |
+
self.bbox = bbox
|
| 29 |
+
self.label = label
|
| 30 |
+
|
| 31 |
+
def __repr__(self) -> str:
|
| 32 |
+
return 'Object[label={:d}, bbox={!s}]'.format(
|
| 33 |
+
self.label, self.bbox)
|
| 34 |
+
|
| 35 |
+
def __init__(self, filename: str, objects: List[Object]):
|
| 36 |
+
super().__init__()
|
| 37 |
+
self.filename = filename
|
| 38 |
+
self.objects = objects
|
| 39 |
+
|
| 40 |
+
CATEGORY_TO_LABEL_DICT = {
|
| 41 |
+
'background': 0, 'person': 1, 'bicycle': 2, 'car': 3, 'motorcycle': 4,
|
| 42 |
+
'airplane': 5, 'bus': 6, 'train': 7, 'truck': 8, 'boat': 9,
|
| 43 |
+
'traffic light': 10, 'fire hydrant': 11, 'street sign': 12, 'stop sign': 13, 'parking meter': 14,
|
| 44 |
+
'bench': 15, 'bird': 16, 'cat': 17, 'dog': 18, 'horse': 19,
|
| 45 |
+
'sheep': 20, 'cow': 21, 'elephant': 22, 'bear': 23, 'zebra': 24,
|
| 46 |
+
'giraffe': 25, 'hat': 26, 'backpack': 27, 'umbrella': 28, 'shoe': 29,
|
| 47 |
+
'eye glasses': 30, 'handbag': 31, 'tie': 32, 'suitcase': 33, 'frisbee': 34,
|
| 48 |
+
'skis': 35, 'snowboard': 36, 'sports ball': 37, 'kite': 38, 'baseball bat': 39,
|
| 49 |
+
'baseball glove': 40, 'skateboard': 41, 'surfboard': 42, 'tennis racket': 43, 'bottle': 44,
|
| 50 |
+
'plate': 45, 'wine glass': 46, 'cup': 47, 'fork': 48, 'knife': 49,
|
| 51 |
+
'spoon': 50, 'bowl': 51, 'banana': 52, 'apple': 53, 'sandwich': 54,
|
| 52 |
+
'orange': 55, 'broccoli': 56, 'carrot': 57, 'hot dog': 58, 'pizza': 59,
|
| 53 |
+
'donut': 60, 'cake': 61, 'chair': 62, 'couch': 63, 'potted plant': 64,
|
| 54 |
+
'bed': 65, 'mirror': 66, 'dining table': 67, 'window': 68, 'desk': 69,
|
| 55 |
+
'toilet': 70, 'door': 71, 'tv': 72, 'laptop': 73, 'mouse': 74,
|
| 56 |
+
'remote': 75, 'keyboard': 76, 'cell phone': 77, 'microwave': 78, 'oven': 79,
|
| 57 |
+
'toaster': 80, 'sink': 81, 'refrigerator': 82, 'blender': 83, 'book': 84,
|
| 58 |
+
'clock': 85, 'vase': 86, 'scissors': 87, 'teddy bear': 88, 'hair drier': 89,
|
| 59 |
+
'toothbrush': 90, 'hair brush': 91
|
| 60 |
+
}
|
| 61 |
+
|
| 62 |
+
LABEL_TO_CATEGORY_DICT = {v: k for k, v in CATEGORY_TO_LABEL_DICT.items()}
|
| 63 |
+
|
| 64 |
+
def __init__(self, path_to_data_dir: str, mode: Base.Mode, image_min_side: float, image_max_side: float):
|
| 65 |
+
super().__init__(path_to_data_dir, mode, image_min_side, image_max_side)
|
| 66 |
+
|
| 67 |
+
path_to_coco_dir = os.path.join(self._path_to_data_dir, 'COCO')
|
| 68 |
+
path_to_annotations_dir = os.path.join(path_to_coco_dir, 'annotations')
|
| 69 |
+
path_to_caches_dir = os.path.join('caches', 'coco2017', f'{self._mode.value}')
|
| 70 |
+
path_to_image_ids_pickle = os.path.join(path_to_caches_dir, 'image-ids.pkl')
|
| 71 |
+
path_to_image_id_dict_pickle = os.path.join(path_to_caches_dir, 'image-id-dict.pkl')
|
| 72 |
+
path_to_image_ratios_pickle = os.path.join(path_to_caches_dir, 'image-ratios.pkl')
|
| 73 |
+
|
| 74 |
+
if self._mode == COCO2017.Mode.TRAIN:
|
| 75 |
+
path_to_jpeg_images_dir = os.path.join(path_to_coco_dir, 'train2017')
|
| 76 |
+
path_to_annotation = os.path.join(path_to_annotations_dir, 'instances_train2017.json')
|
| 77 |
+
elif self._mode == COCO2017.Mode.EVAL:
|
| 78 |
+
path_to_jpeg_images_dir = os.path.join(path_to_coco_dir, 'val2017')
|
| 79 |
+
path_to_annotation = os.path.join(path_to_annotations_dir, 'instances_val2017.json')
|
| 80 |
+
else:
|
| 81 |
+
raise ValueError('invalid mode')
|
| 82 |
+
|
| 83 |
+
coco_dataset = CocoDetection(root=path_to_jpeg_images_dir, annFile=path_to_annotation)
|
| 84 |
+
|
| 85 |
+
if os.path.exists(path_to_image_ids_pickle) and os.path.exists(path_to_image_id_dict_pickle):
|
| 86 |
+
print('loading cache files...')
|
| 87 |
+
|
| 88 |
+
with open(path_to_image_ids_pickle, 'rb') as f:
|
| 89 |
+
self._image_ids = pickle.load(f)
|
| 90 |
+
|
| 91 |
+
with open(path_to_image_id_dict_pickle, 'rb') as f:
|
| 92 |
+
self._image_id_to_annotation_dict = pickle.load(f)
|
| 93 |
+
|
| 94 |
+
with open(path_to_image_ratios_pickle, 'rb') as f:
|
| 95 |
+
self._image_ratios = pickle.load(f)
|
| 96 |
+
else:
|
| 97 |
+
print('generating cache files...')
|
| 98 |
+
|
| 99 |
+
os.makedirs(path_to_caches_dir, exist_ok=True)
|
| 100 |
+
|
| 101 |
+
self._image_ids: List[str] = []
|
| 102 |
+
self._image_id_to_annotation_dict: Dict[str, COCO2017.Annotation] = {}
|
| 103 |
+
self._image_ratios = []
|
| 104 |
+
|
| 105 |
+
for idx, (image, annotation) in enumerate(tqdm(coco_dataset)):
|
| 106 |
+
if len(annotation) > 0:
|
| 107 |
+
image_id = str(annotation[0]['image_id']) # all image_id in annotation are the same
|
| 108 |
+
self._image_ids.append(image_id)
|
| 109 |
+
self._image_id_to_annotation_dict[image_id] = COCO2017.Annotation(
|
| 110 |
+
filename=os.path.join(path_to_jpeg_images_dir, '{:012d}.jpg'.format(int(image_id))),
|
| 111 |
+
objects=[COCO2017.Annotation.Object(
|
| 112 |
+
bbox=BBox( # `ann['bbox']` is in the format [left, top, width, height]
|
| 113 |
+
left=ann['bbox'][0],
|
| 114 |
+
top=ann['bbox'][1],
|
| 115 |
+
right=ann['bbox'][0] + ann['bbox'][2],
|
| 116 |
+
bottom=ann['bbox'][1] + ann['bbox'][3]
|
| 117 |
+
),
|
| 118 |
+
label=ann['category_id'])
|
| 119 |
+
for ann in annotation]
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
ratio = float(image.width / image.height)
|
| 123 |
+
self._image_ratios.append(ratio)
|
| 124 |
+
|
| 125 |
+
with open(path_to_image_ids_pickle, 'wb') as f:
|
| 126 |
+
pickle.dump(self._image_ids, f)
|
| 127 |
+
|
| 128 |
+
with open(path_to_image_id_dict_pickle, 'wb') as f:
|
| 129 |
+
pickle.dump(self._image_id_to_annotation_dict, f)
|
| 130 |
+
|
| 131 |
+
with open(path_to_image_ratios_pickle, 'wb') as f:
|
| 132 |
+
pickle.dump(self.image_ratios, f)
|
| 133 |
+
|
| 134 |
+
def __len__(self) -> int:
|
| 135 |
+
return len(self._image_id_to_annotation_dict)
|
| 136 |
+
|
| 137 |
+
def __getitem__(self, index: int) -> Tuple[str, Tensor, Tensor, Tensor, Tensor]:
|
| 138 |
+
image_id = self._image_ids[index]
|
| 139 |
+
annotation = self._image_id_to_annotation_dict[image_id]
|
| 140 |
+
|
| 141 |
+
bboxes = [obj.bbox.tolist() for obj in annotation.objects]
|
| 142 |
+
labels = [obj.label for obj in annotation.objects]
|
| 143 |
+
|
| 144 |
+
bboxes = torch.tensor(bboxes, dtype=torch.float)
|
| 145 |
+
labels = torch.tensor(labels, dtype=torch.long)
|
| 146 |
+
|
| 147 |
+
image = Image.open(annotation.filename).convert('RGB') # for some grayscale images
|
| 148 |
+
|
| 149 |
+
# random flip on only training mode
|
| 150 |
+
if self._mode == COCO2017.Mode.TRAIN and random.random() > 0.5:
|
| 151 |
+
image = ImageOps.mirror(image)
|
| 152 |
+
bboxes[:, [0, 2]] = image.width - bboxes[:, [2, 0]] # index 0 and 2 represent `left` and `right` respectively
|
| 153 |
+
|
| 154 |
+
image, scale = COCO2017.preprocess(image, self._image_min_side, self._image_max_side)
|
| 155 |
+
scale = torch.tensor(scale, dtype=torch.float)
|
| 156 |
+
bboxes *= scale
|
| 157 |
+
|
| 158 |
+
return image_id, image, scale, bboxes, labels
|
| 159 |
+
|
| 160 |
+
def evaluate(self, path_to_results_dir: str, image_ids: List[str], bboxes: List[List[float]], classes: List[int], probs: List[float]) -> Tuple[float, str]:
|
| 161 |
+
self._write_results(path_to_results_dir, image_ids, bboxes, classes, probs)
|
| 162 |
+
|
| 163 |
+
annType = 'bbox'
|
| 164 |
+
path_to_coco_dir = os.path.join(self._path_to_data_dir, 'COCO')
|
| 165 |
+
path_to_annotations_dir = os.path.join(path_to_coco_dir, 'annotations')
|
| 166 |
+
path_to_annotation = os.path.join(path_to_annotations_dir, 'instances_val2017.json')
|
| 167 |
+
|
| 168 |
+
cocoGt = COCO(path_to_annotation)
|
| 169 |
+
cocoDt = cocoGt.loadRes(os.path.join(path_to_results_dir, 'results.json'))
|
| 170 |
+
|
| 171 |
+
cocoEval = COCOeval(cocoGt, cocoDt, annType)
|
| 172 |
+
cocoEval.evaluate()
|
| 173 |
+
cocoEval.accumulate()
|
| 174 |
+
|
| 175 |
+
original_stdout = sys.stdout
|
| 176 |
+
string_stdout = StringIO()
|
| 177 |
+
sys.stdout = string_stdout
|
| 178 |
+
cocoEval.summarize()
|
| 179 |
+
sys.stdout = original_stdout
|
| 180 |
+
|
| 181 |
+
mean_ap = cocoEval.stats[0].item() # stats[0] records AP@[0.5:0.95]
|
| 182 |
+
detail = string_stdout.getvalue()
|
| 183 |
+
|
| 184 |
+
return mean_ap, detail
|
| 185 |
+
|
| 186 |
+
def _write_results(self, path_to_results_dir: str, image_ids: List[str], bboxes: List[List[float]], classes: List[int], probs: List[float]):
|
| 187 |
+
results = []
|
| 188 |
+
for image_id, bbox, cls, prob in zip(image_ids, bboxes, classes, probs):
|
| 189 |
+
results.append(
|
| 190 |
+
{
|
| 191 |
+
'image_id': int(image_id), # COCO evaluation requires `image_id` to be type `int`
|
| 192 |
+
'category_id': cls,
|
| 193 |
+
'bbox': [ # format [left, top, width, height] is expected
|
| 194 |
+
bbox[0],
|
| 195 |
+
bbox[1],
|
| 196 |
+
bbox[2] - bbox[0],
|
| 197 |
+
bbox[3] - bbox[1]
|
| 198 |
+
],
|
| 199 |
+
'score': prob
|
| 200 |
+
}
|
| 201 |
+
)
|
| 202 |
+
|
| 203 |
+
with open(os.path.join(path_to_results_dir, 'results.json'), 'w') as f:
|
| 204 |
+
json.dump(results, f)
|
| 205 |
+
|
| 206 |
+
@property
|
| 207 |
+
def image_ratios(self) -> List[float]:
|
| 208 |
+
return self._image_ratios
|
| 209 |
+
|
| 210 |
+
@staticmethod
|
| 211 |
+
def num_classes() -> int:
|
| 212 |
+
return 92
|
dataset/coco2017_animal.py
ADDED
|
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
import pickle
|
| 4 |
+
import random
|
| 5 |
+
import sys
|
| 6 |
+
from io import StringIO
|
| 7 |
+
from typing import List, Tuple, Dict
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.utils.data.dataset
|
| 11 |
+
from PIL import Image, ImageOps
|
| 12 |
+
from pycocotools.coco import COCO
|
| 13 |
+
from pycocotools.cocoeval import COCOeval
|
| 14 |
+
from torch import Tensor
|
| 15 |
+
from torchvision.datasets import CocoDetection
|
| 16 |
+
from tqdm import tqdm
|
| 17 |
+
|
| 18 |
+
from bbox import BBox
|
| 19 |
+
from dataset.base import Base
|
| 20 |
+
from dataset.coco2017 import COCO2017
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class COCO2017Animal(Base):
|
| 24 |
+
|
| 25 |
+
class Annotation(object):
|
| 26 |
+
class Object(object):
|
| 27 |
+
def __init__(self, bbox: BBox, label: int):
|
| 28 |
+
super().__init__()
|
| 29 |
+
self.bbox = bbox
|
| 30 |
+
self.label = label
|
| 31 |
+
|
| 32 |
+
def __repr__(self) -> str:
|
| 33 |
+
return 'Object[label={:d}, bbox={!s}]'.format(
|
| 34 |
+
self.label, self.bbox)
|
| 35 |
+
|
| 36 |
+
def __init__(self, filename: str, objects: List[Object]):
|
| 37 |
+
super().__init__()
|
| 38 |
+
self.filename = filename
|
| 39 |
+
self.objects = objects
|
| 40 |
+
|
| 41 |
+
CATEGORY_TO_LABEL_DICT = {
|
| 42 |
+
'background': 0,
|
| 43 |
+
'bird': 1, 'cat': 2, 'dog': 3, 'horse': 4, 'sheep': 5,
|
| 44 |
+
'cow': 6, 'elephant': 7, 'bear': 8, 'zebra': 9, 'giraffe': 10
|
| 45 |
+
}
|
| 46 |
+
|
| 47 |
+
LABEL_TO_CATEGORY_DICT = {v: k for k, v in CATEGORY_TO_LABEL_DICT.items()}
|
| 48 |
+
|
| 49 |
+
def __init__(self, path_to_data_dir: str, mode: Base.Mode, image_min_side: float, image_max_side: float):
|
| 50 |
+
super().__init__(path_to_data_dir, mode, image_min_side, image_max_side)
|
| 51 |
+
|
| 52 |
+
path_to_coco_dir = os.path.join(self._path_to_data_dir, 'COCO')
|
| 53 |
+
path_to_annotations_dir = os.path.join(path_to_coco_dir, 'annotations')
|
| 54 |
+
path_to_caches_dir = os.path.join('caches', 'coco2017-animal', f'{self._mode.value}')
|
| 55 |
+
path_to_image_ids_pickle = os.path.join(path_to_caches_dir, 'image-ids.pkl')
|
| 56 |
+
path_to_image_id_dict_pickle = os.path.join(path_to_caches_dir, 'image-id-dict.pkl')
|
| 57 |
+
path_to_image_ratios_pickle = os.path.join(path_to_caches_dir, 'image-ratios.pkl')
|
| 58 |
+
|
| 59 |
+
if self._mode == COCO2017Animal.Mode.TRAIN:
|
| 60 |
+
path_to_jpeg_images_dir = os.path.join(path_to_coco_dir, 'train2017')
|
| 61 |
+
path_to_annotation = os.path.join(path_to_annotations_dir, 'instances_train2017.json')
|
| 62 |
+
elif self._mode == COCO2017Animal.Mode.EVAL:
|
| 63 |
+
path_to_jpeg_images_dir = os.path.join(path_to_coco_dir, 'val2017')
|
| 64 |
+
path_to_annotation = os.path.join(path_to_annotations_dir, 'instances_val2017.json')
|
| 65 |
+
else:
|
| 66 |
+
raise ValueError('invalid mode')
|
| 67 |
+
|
| 68 |
+
coco_dataset = CocoDetection(root=path_to_jpeg_images_dir, annFile=path_to_annotation)
|
| 69 |
+
|
| 70 |
+
if os.path.exists(path_to_image_ids_pickle) and os.path.exists(path_to_image_id_dict_pickle):
|
| 71 |
+
print('loading cache files...')
|
| 72 |
+
|
| 73 |
+
with open(path_to_image_ids_pickle, 'rb') as f:
|
| 74 |
+
self._image_ids = pickle.load(f)
|
| 75 |
+
|
| 76 |
+
with open(path_to_image_id_dict_pickle, 'rb') as f:
|
| 77 |
+
self._image_id_to_annotation_dict = pickle.load(f)
|
| 78 |
+
|
| 79 |
+
with open(path_to_image_ratios_pickle, 'rb') as f:
|
| 80 |
+
self._image_ratios = pickle.load(f)
|
| 81 |
+
else:
|
| 82 |
+
print('generating cache files...')
|
| 83 |
+
|
| 84 |
+
os.makedirs(path_to_caches_dir, exist_ok=True)
|
| 85 |
+
|
| 86 |
+
self._image_id_to_annotation_dict: Dict[str, COCO2017Animal.Annotation] = {}
|
| 87 |
+
self._image_ratios = []
|
| 88 |
+
|
| 89 |
+
for idx, (image, annotation) in enumerate(tqdm(coco_dataset)):
|
| 90 |
+
if len(annotation) > 0:
|
| 91 |
+
image_id = str(annotation[0]['image_id']) # all image_id in annotation are the same
|
| 92 |
+
annotation = COCO2017Animal.Annotation(
|
| 93 |
+
filename=os.path.join(path_to_jpeg_images_dir, '{:012d}.jpg'.format(int(image_id))),
|
| 94 |
+
objects=[COCO2017Animal.Annotation.Object(
|
| 95 |
+
bbox=BBox( # `ann['bbox']` is in the format [left, top, width, height]
|
| 96 |
+
left=ann['bbox'][0],
|
| 97 |
+
top=ann['bbox'][1],
|
| 98 |
+
right=ann['bbox'][0] + ann['bbox'][2],
|
| 99 |
+
bottom=ann['bbox'][1] + ann['bbox'][3]
|
| 100 |
+
),
|
| 101 |
+
label=ann['category_id'])
|
| 102 |
+
for ann in annotation]
|
| 103 |
+
)
|
| 104 |
+
annotation.objects = [obj for obj in annotation.objects
|
| 105 |
+
if obj.label in [COCO2017.CATEGORY_TO_LABEL_DICT[category] # filtering label should refer to original `COCO2017` dataset
|
| 106 |
+
for category in COCO2017Animal.CATEGORY_TO_LABEL_DICT.keys()][1:]]
|
| 107 |
+
|
| 108 |
+
if len(annotation.objects) > 0:
|
| 109 |
+
self._image_id_to_annotation_dict[image_id] = annotation
|
| 110 |
+
|
| 111 |
+
ratio = float(image.width / image.height)
|
| 112 |
+
self._image_ratios.append(ratio)
|
| 113 |
+
|
| 114 |
+
self._image_ids = list(self._image_id_to_annotation_dict.keys())
|
| 115 |
+
|
| 116 |
+
with open(path_to_image_ids_pickle, 'wb') as f:
|
| 117 |
+
pickle.dump(self._image_ids, f)
|
| 118 |
+
|
| 119 |
+
with open(path_to_image_id_dict_pickle, 'wb') as f:
|
| 120 |
+
pickle.dump(self._image_id_to_annotation_dict, f)
|
| 121 |
+
|
| 122 |
+
with open(path_to_image_ratios_pickle, 'wb') as f:
|
| 123 |
+
pickle.dump(self.image_ratios, f)
|
| 124 |
+
|
| 125 |
+
def __len__(self) -> int:
|
| 126 |
+
return len(self._image_id_to_annotation_dict)
|
| 127 |
+
|
| 128 |
+
def __getitem__(self, index: int) -> Tuple[str, Tensor, Tensor, Tensor, Tensor]:
|
| 129 |
+
image_id = self._image_ids[index]
|
| 130 |
+
annotation = self._image_id_to_annotation_dict[image_id]
|
| 131 |
+
|
| 132 |
+
bboxes = [obj.bbox.tolist() for obj in annotation.objects]
|
| 133 |
+
labels = [COCO2017Animal.CATEGORY_TO_LABEL_DICT[COCO2017.LABEL_TO_CATEGORY_DICT[obj.label]] for obj in annotation.objects] # mapping from original `COCO2017` dataset
|
| 134 |
+
|
| 135 |
+
bboxes = torch.tensor(bboxes, dtype=torch.float)
|
| 136 |
+
labels = torch.tensor(labels, dtype=torch.long)
|
| 137 |
+
|
| 138 |
+
image = Image.open(annotation.filename).convert('RGB') # for some grayscale images
|
| 139 |
+
|
| 140 |
+
# random flip on only training mode
|
| 141 |
+
if self._mode == COCO2017Animal.Mode.TRAIN and random.random() > 0.5:
|
| 142 |
+
image = ImageOps.mirror(image)
|
| 143 |
+
bboxes[:, [0, 2]] = image.width - bboxes[:, [2, 0]] # index 0 and 2 represent `left` and `right` respectively
|
| 144 |
+
|
| 145 |
+
image, scale = COCO2017Animal.preprocess(image, self._image_min_side, self._image_max_side)
|
| 146 |
+
scale = torch.tensor(scale, dtype=torch.float)
|
| 147 |
+
bboxes *= scale
|
| 148 |
+
|
| 149 |
+
return image_id, image, scale, bboxes, labels
|
| 150 |
+
|
| 151 |
+
def evaluate(self, path_to_results_dir: str, image_ids: List[str], bboxes: List[List[float]], classes: List[int], probs: List[float]) -> Tuple[float, str]:
|
| 152 |
+
self._write_results(path_to_results_dir, image_ids, bboxes, classes, probs)
|
| 153 |
+
|
| 154 |
+
annType = 'bbox'
|
| 155 |
+
path_to_coco_dir = os.path.join(self._path_to_data_dir, 'COCO')
|
| 156 |
+
path_to_annotations_dir = os.path.join(path_to_coco_dir, 'annotations')
|
| 157 |
+
path_to_annotation = os.path.join(path_to_annotations_dir, 'instances_val2017.json')
|
| 158 |
+
|
| 159 |
+
cocoGt = COCO(path_to_annotation)
|
| 160 |
+
cocoDt = cocoGt.loadRes(os.path.join(path_to_results_dir, 'results.json'))
|
| 161 |
+
|
| 162 |
+
cocoEval = COCOeval(cocoGt, cocoDt, annType)
|
| 163 |
+
cocoEval.params.catIds = [COCO2017.CATEGORY_TO_LABEL_DICT[category] # filtering label should refer to original `COCO2017` dataset
|
| 164 |
+
for category in COCO2017Animal.CATEGORY_TO_LABEL_DICT.keys()]
|
| 165 |
+
cocoEval.evaluate()
|
| 166 |
+
cocoEval.accumulate()
|
| 167 |
+
|
| 168 |
+
original_stdout = sys.stdout
|
| 169 |
+
string_stdout = StringIO()
|
| 170 |
+
sys.stdout = string_stdout
|
| 171 |
+
cocoEval.summarize()
|
| 172 |
+
sys.stdout = original_stdout
|
| 173 |
+
|
| 174 |
+
mean_ap = cocoEval.stats[0].item() # stats[0] records AP@[0.5:0.95]
|
| 175 |
+
detail = string_stdout.getvalue()
|
| 176 |
+
|
| 177 |
+
return mean_ap, detail
|
| 178 |
+
|
| 179 |
+
def _write_results(self, path_to_results_dir: str, image_ids: List[str], bboxes: List[List[float]], classes: List[int], probs: List[float]):
|
| 180 |
+
results = []
|
| 181 |
+
for image_id, bbox, cls, prob in zip(image_ids, bboxes, classes, probs):
|
| 182 |
+
results.append(
|
| 183 |
+
{
|
| 184 |
+
'image_id': int(image_id), # COCO evaluation requires `image_id` to be type `int`
|
| 185 |
+
'category_id': COCO2017.CATEGORY_TO_LABEL_DICT[COCO2017Animal.LABEL_TO_CATEGORY_DICT[cls]], # mapping to original `COCO2017` dataset
|
| 186 |
+
'bbox': [ # format [left, top, width, height] is expected
|
| 187 |
+
bbox[0],
|
| 188 |
+
bbox[1],
|
| 189 |
+
bbox[2] - bbox[0],
|
| 190 |
+
bbox[3] - bbox[1]
|
| 191 |
+
],
|
| 192 |
+
'score': prob
|
| 193 |
+
}
|
| 194 |
+
)
|
| 195 |
+
|
| 196 |
+
with open(os.path.join(path_to_results_dir, 'results.json'), 'w') as f:
|
| 197 |
+
json.dump(results, f)
|
| 198 |
+
|
| 199 |
+
@property
|
| 200 |
+
def image_ratios(self) -> List[float]:
|
| 201 |
+
return self._image_ratios
|
| 202 |
+
|
| 203 |
+
@staticmethod
|
| 204 |
+
def num_classes() -> int:
|
| 205 |
+
return 11
|
dataset/coco2017_car.py
ADDED
|
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
import pickle
|
| 4 |
+
import random
|
| 5 |
+
import sys
|
| 6 |
+
from io import StringIO
|
| 7 |
+
from typing import List, Tuple, Dict
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.utils.data.dataset
|
| 11 |
+
from PIL import Image, ImageOps
|
| 12 |
+
from pycocotools.coco import COCO
|
| 13 |
+
from pycocotools.cocoeval import COCOeval
|
| 14 |
+
from torch import Tensor
|
| 15 |
+
from torchvision.datasets import CocoDetection
|
| 16 |
+
from tqdm import tqdm
|
| 17 |
+
|
| 18 |
+
from bbox import BBox
|
| 19 |
+
from dataset.base import Base
|
| 20 |
+
from dataset.coco2017 import COCO2017
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class COCO2017Car(Base):
|
| 24 |
+
|
| 25 |
+
class Annotation(object):
|
| 26 |
+
class Object(object):
|
| 27 |
+
def __init__(self, bbox: BBox, label: int):
|
| 28 |
+
super().__init__()
|
| 29 |
+
self.bbox = bbox
|
| 30 |
+
self.label = label
|
| 31 |
+
|
| 32 |
+
def __repr__(self) -> str:
|
| 33 |
+
return 'Object[label={:d}, bbox={!s}]'.format(
|
| 34 |
+
self.label, self.bbox)
|
| 35 |
+
|
| 36 |
+
def __init__(self, filename: str, objects: List[Object]):
|
| 37 |
+
super().__init__()
|
| 38 |
+
self.filename = filename
|
| 39 |
+
self.objects = objects
|
| 40 |
+
|
| 41 |
+
CATEGORY_TO_LABEL_DICT = {
|
| 42 |
+
'background': 0, 'car': 1
|
| 43 |
+
}
|
| 44 |
+
|
| 45 |
+
LABEL_TO_CATEGORY_DICT = {v: k for k, v in CATEGORY_TO_LABEL_DICT.items()}
|
| 46 |
+
|
| 47 |
+
def __init__(self, path_to_data_dir: str, mode: Base.Mode, image_min_side: float, image_max_side: float):
|
| 48 |
+
super().__init__(path_to_data_dir, mode, image_min_side, image_max_side)
|
| 49 |
+
|
| 50 |
+
path_to_coco_dir = os.path.join(self._path_to_data_dir, 'COCO')
|
| 51 |
+
path_to_annotations_dir = os.path.join(path_to_coco_dir, 'annotations')
|
| 52 |
+
path_to_caches_dir = os.path.join('caches', 'coco2017-car', f'{self._mode.value}')
|
| 53 |
+
path_to_image_ids_pickle = os.path.join(path_to_caches_dir, 'image-ids.pkl')
|
| 54 |
+
path_to_image_id_dict_pickle = os.path.join(path_to_caches_dir, 'image-id-dict.pkl')
|
| 55 |
+
path_to_image_ratios_pickle = os.path.join(path_to_caches_dir, 'image-ratios.pkl')
|
| 56 |
+
|
| 57 |
+
if self._mode == COCO2017Car.Mode.TRAIN:
|
| 58 |
+
path_to_jpeg_images_dir = os.path.join(path_to_coco_dir, 'train2017')
|
| 59 |
+
path_to_annotation = os.path.join(path_to_annotations_dir, 'instances_train2017.json')
|
| 60 |
+
elif self._mode == COCO2017Car.Mode.EVAL:
|
| 61 |
+
path_to_jpeg_images_dir = os.path.join(path_to_coco_dir, 'val2017')
|
| 62 |
+
path_to_annotation = os.path.join(path_to_annotations_dir, 'instances_val2017.json')
|
| 63 |
+
else:
|
| 64 |
+
raise ValueError('invalid mode')
|
| 65 |
+
|
| 66 |
+
coco_dataset = CocoDetection(root=path_to_jpeg_images_dir, annFile=path_to_annotation)
|
| 67 |
+
|
| 68 |
+
if os.path.exists(path_to_image_ids_pickle) and os.path.exists(path_to_image_id_dict_pickle):
|
| 69 |
+
print('loading cache files...')
|
| 70 |
+
|
| 71 |
+
with open(path_to_image_ids_pickle, 'rb') as f:
|
| 72 |
+
self._image_ids = pickle.load(f)
|
| 73 |
+
|
| 74 |
+
with open(path_to_image_id_dict_pickle, 'rb') as f:
|
| 75 |
+
self._image_id_to_annotation_dict = pickle.load(f)
|
| 76 |
+
|
| 77 |
+
with open(path_to_image_ratios_pickle, 'rb') as f:
|
| 78 |
+
self._image_ratios = pickle.load(f)
|
| 79 |
+
else:
|
| 80 |
+
print('generating cache files...')
|
| 81 |
+
|
| 82 |
+
os.makedirs(path_to_caches_dir, exist_ok=True)
|
| 83 |
+
|
| 84 |
+
self._image_id_to_annotation_dict: Dict[str, COCO2017Car.Annotation] = {}
|
| 85 |
+
self._image_ratios = []
|
| 86 |
+
|
| 87 |
+
for idx, (image, annotation) in enumerate(tqdm(coco_dataset)):
|
| 88 |
+
if len(annotation) > 0:
|
| 89 |
+
image_id = str(annotation[0]['image_id']) # all image_id in annotation are the same
|
| 90 |
+
annotation = COCO2017Car.Annotation(
|
| 91 |
+
filename=os.path.join(path_to_jpeg_images_dir, '{:012d}.jpg'.format(int(image_id))),
|
| 92 |
+
objects=[COCO2017Car.Annotation.Object(
|
| 93 |
+
bbox=BBox( # `ann['bbox']` is in the format [left, top, width, height]
|
| 94 |
+
left=ann['bbox'][0],
|
| 95 |
+
top=ann['bbox'][1],
|
| 96 |
+
right=ann['bbox'][0] + ann['bbox'][2],
|
| 97 |
+
bottom=ann['bbox'][1] + ann['bbox'][3]
|
| 98 |
+
),
|
| 99 |
+
label=ann['category_id'])
|
| 100 |
+
for ann in annotation]
|
| 101 |
+
)
|
| 102 |
+
annotation.objects = [obj for obj in annotation.objects
|
| 103 |
+
if obj.label in [COCO2017.CATEGORY_TO_LABEL_DICT['car']]] # filtering label should refer to original `COCO2017` dataset
|
| 104 |
+
|
| 105 |
+
if len(annotation.objects) > 0:
|
| 106 |
+
self._image_id_to_annotation_dict[image_id] = annotation
|
| 107 |
+
|
| 108 |
+
ratio = float(image.width / image.height)
|
| 109 |
+
self._image_ratios.append(ratio)
|
| 110 |
+
|
| 111 |
+
self._image_ids = list(self._image_id_to_annotation_dict.keys())
|
| 112 |
+
|
| 113 |
+
with open(path_to_image_ids_pickle, 'wb') as f:
|
| 114 |
+
pickle.dump(self._image_ids, f)
|
| 115 |
+
|
| 116 |
+
with open(path_to_image_id_dict_pickle, 'wb') as f:
|
| 117 |
+
pickle.dump(self._image_id_to_annotation_dict, f)
|
| 118 |
+
|
| 119 |
+
with open(path_to_image_ratios_pickle, 'wb') as f:
|
| 120 |
+
pickle.dump(self.image_ratios, f)
|
| 121 |
+
|
| 122 |
+
def __len__(self) -> int:
|
| 123 |
+
return len(self._image_id_to_annotation_dict)
|
| 124 |
+
|
| 125 |
+
def __getitem__(self, index: int) -> Tuple[str, Tensor, Tensor, Tensor, Tensor]:
|
| 126 |
+
image_id = self._image_ids[index]
|
| 127 |
+
annotation = self._image_id_to_annotation_dict[image_id]
|
| 128 |
+
|
| 129 |
+
bboxes = [obj.bbox.tolist() for obj in annotation.objects]
|
| 130 |
+
labels = [COCO2017Car.CATEGORY_TO_LABEL_DICT[COCO2017.LABEL_TO_CATEGORY_DICT[obj.label]] for obj in annotation.objects] # mapping from original `COCO2017` dataset
|
| 131 |
+
|
| 132 |
+
bboxes = torch.tensor(bboxes, dtype=torch.float)
|
| 133 |
+
labels = torch.tensor(labels, dtype=torch.long)
|
| 134 |
+
|
| 135 |
+
image = Image.open(annotation.filename).convert('RGB') # for some grayscale images
|
| 136 |
+
|
| 137 |
+
# random flip on only training mode
|
| 138 |
+
if self._mode == COCO2017Car.Mode.TRAIN and random.random() > 0.5:
|
| 139 |
+
image = ImageOps.mirror(image)
|
| 140 |
+
bboxes[:, [0, 2]] = image.width - bboxes[:, [2, 0]] # index 0 and 2 represent `left` and `right` respectively
|
| 141 |
+
|
| 142 |
+
image, scale = COCO2017Car.preprocess(image, self._image_min_side, self._image_max_side)
|
| 143 |
+
scale = torch.tensor(scale, dtype=torch.float)
|
| 144 |
+
bboxes *= scale
|
| 145 |
+
|
| 146 |
+
return image_id, image, scale, bboxes, labels
|
| 147 |
+
|
| 148 |
+
def evaluate(self, path_to_results_dir: str, image_ids: List[str], bboxes: List[List[float]], classes: List[int], probs: List[float]) -> Tuple[float, str]:
|
| 149 |
+
self._write_results(path_to_results_dir, image_ids, bboxes, classes, probs)
|
| 150 |
+
|
| 151 |
+
annType = 'bbox'
|
| 152 |
+
path_to_coco_dir = os.path.join(self._path_to_data_dir, 'COCO')
|
| 153 |
+
path_to_annotations_dir = os.path.join(path_to_coco_dir, 'annotations')
|
| 154 |
+
path_to_annotation = os.path.join(path_to_annotations_dir, 'instances_val2017.json')
|
| 155 |
+
|
| 156 |
+
cocoGt = COCO(path_to_annotation)
|
| 157 |
+
cocoDt = cocoGt.loadRes(os.path.join(path_to_results_dir, 'results.json'))
|
| 158 |
+
|
| 159 |
+
cocoEval = COCOeval(cocoGt, cocoDt, annType)
|
| 160 |
+
cocoEval.params.catIds = COCO2017.CATEGORY_TO_LABEL_DICT['car'] # filtering label should refer to original `COCO2017` dataset
|
| 161 |
+
cocoEval.evaluate()
|
| 162 |
+
cocoEval.accumulate()
|
| 163 |
+
|
| 164 |
+
original_stdout = sys.stdout
|
| 165 |
+
string_stdout = StringIO()
|
| 166 |
+
sys.stdout = string_stdout
|
| 167 |
+
cocoEval.summarize()
|
| 168 |
+
sys.stdout = original_stdout
|
| 169 |
+
|
| 170 |
+
mean_ap = cocoEval.stats[0].item() # stats[0] records AP@[0.5:0.95]
|
| 171 |
+
detail = string_stdout.getvalue()
|
| 172 |
+
|
| 173 |
+
return mean_ap, detail
|
| 174 |
+
|
| 175 |
+
def _write_results(self, path_to_results_dir: str, image_ids: List[str], bboxes: List[List[float]], classes: List[int], probs: List[float]):
|
| 176 |
+
results = []
|
| 177 |
+
for image_id, bbox, cls, prob in zip(image_ids, bboxes, classes, probs):
|
| 178 |
+
results.append(
|
| 179 |
+
{
|
| 180 |
+
'image_id': int(image_id), # COCO evaluation requires `image_id` to be type `int`
|
| 181 |
+
'category_id': COCO2017.CATEGORY_TO_LABEL_DICT[COCO2017Car.LABEL_TO_CATEGORY_DICT[cls]], # mapping to original `COCO2017` dataset
|
| 182 |
+
'bbox': [ # format [left, top, width, height] is expected
|
| 183 |
+
bbox[0],
|
| 184 |
+
bbox[1],
|
| 185 |
+
bbox[2] - bbox[0],
|
| 186 |
+
bbox[3] - bbox[1]
|
| 187 |
+
],
|
| 188 |
+
'score': prob
|
| 189 |
+
}
|
| 190 |
+
)
|
| 191 |
+
|
| 192 |
+
with open(os.path.join(path_to_results_dir, 'results.json'), 'w') as f:
|
| 193 |
+
json.dump(results, f)
|
| 194 |
+
|
| 195 |
+
@property
|
| 196 |
+
def image_ratios(self) -> List[float]:
|
| 197 |
+
return self._image_ratios
|
| 198 |
+
|
| 199 |
+
@staticmethod
|
| 200 |
+
def num_classes() -> int:
|
| 201 |
+
return 2
|
dataset/coco2017_person.py
ADDED
|
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
import pickle
|
| 4 |
+
import random
|
| 5 |
+
import sys
|
| 6 |
+
from io import StringIO
|
| 7 |
+
from typing import List, Tuple, Dict
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.utils.data.dataset
|
| 11 |
+
from PIL import Image, ImageOps
|
| 12 |
+
from pycocotools.coco import COCO
|
| 13 |
+
from pycocotools.cocoeval import COCOeval
|
| 14 |
+
from torch import Tensor
|
| 15 |
+
from torchvision.datasets import CocoDetection
|
| 16 |
+
from tqdm import tqdm
|
| 17 |
+
|
| 18 |
+
from bbox import BBox
|
| 19 |
+
from dataset.base import Base
|
| 20 |
+
from dataset.coco2017 import COCO2017
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class COCO2017Person(Base):
|
| 24 |
+
|
| 25 |
+
class Annotation(object):
|
| 26 |
+
class Object(object):
|
| 27 |
+
def __init__(self, bbox: BBox, label: int):
|
| 28 |
+
super().__init__()
|
| 29 |
+
self.bbox = bbox
|
| 30 |
+
self.label = label
|
| 31 |
+
|
| 32 |
+
def __repr__(self) -> str:
|
| 33 |
+
return 'Object[label={:d}, bbox={!s}]'.format(
|
| 34 |
+
self.label, self.bbox)
|
| 35 |
+
|
| 36 |
+
def __init__(self, filename: str, objects: List[Object]):
|
| 37 |
+
super().__init__()
|
| 38 |
+
self.filename = filename
|
| 39 |
+
self.objects = objects
|
| 40 |
+
|
| 41 |
+
CATEGORY_TO_LABEL_DICT = {
|
| 42 |
+
'background': 0, 'person': 1
|
| 43 |
+
}
|
| 44 |
+
|
| 45 |
+
LABEL_TO_CATEGORY_DICT = {v: k for k, v in CATEGORY_TO_LABEL_DICT.items()}
|
| 46 |
+
|
| 47 |
+
def __init__(self, path_to_data_dir: str, mode: Base.Mode, image_min_side: float, image_max_side: float):
|
| 48 |
+
super().__init__(path_to_data_dir, mode, image_min_side, image_max_side)
|
| 49 |
+
|
| 50 |
+
path_to_coco_dir = os.path.join(self._path_to_data_dir, 'COCO')
|
| 51 |
+
path_to_annotations_dir = os.path.join(path_to_coco_dir, 'annotations')
|
| 52 |
+
path_to_caches_dir = os.path.join('caches', 'coco2017-person', f'{self._mode.value}')
|
| 53 |
+
path_to_image_ids_pickle = os.path.join(path_to_caches_dir, 'image-ids.pkl')
|
| 54 |
+
path_to_image_id_dict_pickle = os.path.join(path_to_caches_dir, 'image-id-dict.pkl')
|
| 55 |
+
path_to_image_ratios_pickle = os.path.join(path_to_caches_dir, 'image-ratios.pkl')
|
| 56 |
+
|
| 57 |
+
if self._mode == COCO2017Person.Mode.TRAIN:
|
| 58 |
+
path_to_jpeg_images_dir = os.path.join(path_to_coco_dir, 'train2017')
|
| 59 |
+
path_to_annotation = os.path.join(path_to_annotations_dir, 'instances_train2017.json')
|
| 60 |
+
elif self._mode == COCO2017Person.Mode.EVAL:
|
| 61 |
+
path_to_jpeg_images_dir = os.path.join(path_to_coco_dir, 'val2017')
|
| 62 |
+
path_to_annotation = os.path.join(path_to_annotations_dir, 'instances_val2017.json')
|
| 63 |
+
else:
|
| 64 |
+
raise ValueError('invalid mode')
|
| 65 |
+
|
| 66 |
+
coco_dataset = CocoDetection(root=path_to_jpeg_images_dir, annFile=path_to_annotation)
|
| 67 |
+
|
| 68 |
+
if os.path.exists(path_to_image_ids_pickle) and os.path.exists(path_to_image_id_dict_pickle):
|
| 69 |
+
print('loading cache files...')
|
| 70 |
+
|
| 71 |
+
with open(path_to_image_ids_pickle, 'rb') as f:
|
| 72 |
+
self._image_ids = pickle.load(f)
|
| 73 |
+
|
| 74 |
+
with open(path_to_image_id_dict_pickle, 'rb') as f:
|
| 75 |
+
self._image_id_to_annotation_dict = pickle.load(f)
|
| 76 |
+
|
| 77 |
+
with open(path_to_image_ratios_pickle, 'rb') as f:
|
| 78 |
+
self._image_ratios = pickle.load(f)
|
| 79 |
+
else:
|
| 80 |
+
print('generating cache files...')
|
| 81 |
+
|
| 82 |
+
os.makedirs(path_to_caches_dir, exist_ok=True)
|
| 83 |
+
|
| 84 |
+
self._image_id_to_annotation_dict: Dict[str, COCO2017Person.Annotation] = {}
|
| 85 |
+
self._image_ratios = []
|
| 86 |
+
|
| 87 |
+
for idx, (image, annotation) in enumerate(tqdm(coco_dataset)):
|
| 88 |
+
if len(annotation) > 0:
|
| 89 |
+
image_id = str(annotation[0]['image_id']) # all image_id in annotation are the same
|
| 90 |
+
annotation = COCO2017Person.Annotation(
|
| 91 |
+
filename=os.path.join(path_to_jpeg_images_dir, '{:012d}.jpg'.format(int(image_id))),
|
| 92 |
+
objects=[COCO2017Person.Annotation.Object(
|
| 93 |
+
bbox=BBox( # `ann['bbox']` is in the format [left, top, width, height]
|
| 94 |
+
left=ann['bbox'][0],
|
| 95 |
+
top=ann['bbox'][1],
|
| 96 |
+
right=ann['bbox'][0] + ann['bbox'][2],
|
| 97 |
+
bottom=ann['bbox'][1] + ann['bbox'][3]
|
| 98 |
+
),
|
| 99 |
+
label=ann['category_id'])
|
| 100 |
+
for ann in annotation]
|
| 101 |
+
)
|
| 102 |
+
annotation.objects = [obj for obj in annotation.objects
|
| 103 |
+
if obj.label in [COCO2017.CATEGORY_TO_LABEL_DICT['person']]] # filtering label should refer to original `COCO2017` dataset
|
| 104 |
+
|
| 105 |
+
if len(annotation.objects) > 0:
|
| 106 |
+
self._image_id_to_annotation_dict[image_id] = annotation
|
| 107 |
+
|
| 108 |
+
ratio = float(image.width / image.height)
|
| 109 |
+
self._image_ratios.append(ratio)
|
| 110 |
+
|
| 111 |
+
self._image_ids = list(self._image_id_to_annotation_dict.keys())
|
| 112 |
+
|
| 113 |
+
with open(path_to_image_ids_pickle, 'wb') as f:
|
| 114 |
+
pickle.dump(self._image_ids, f)
|
| 115 |
+
|
| 116 |
+
with open(path_to_image_id_dict_pickle, 'wb') as f:
|
| 117 |
+
pickle.dump(self._image_id_to_annotation_dict, f)
|
| 118 |
+
|
| 119 |
+
with open(path_to_image_ratios_pickle, 'wb') as f:
|
| 120 |
+
pickle.dump(self.image_ratios, f)
|
| 121 |
+
|
| 122 |
+
def __len__(self) -> int:
|
| 123 |
+
return len(self._image_id_to_annotation_dict)
|
| 124 |
+
|
| 125 |
+
def __getitem__(self, index: int) -> Tuple[str, Tensor, Tensor, Tensor, Tensor]:
|
| 126 |
+
image_id = self._image_ids[index]
|
| 127 |
+
annotation = self._image_id_to_annotation_dict[image_id]
|
| 128 |
+
|
| 129 |
+
bboxes = [obj.bbox.tolist() for obj in annotation.objects]
|
| 130 |
+
labels = [COCO2017Person.CATEGORY_TO_LABEL_DICT[COCO2017.LABEL_TO_CATEGORY_DICT[obj.label]] for obj in annotation.objects] # mapping from original `COCO2017` dataset
|
| 131 |
+
|
| 132 |
+
bboxes = torch.tensor(bboxes, dtype=torch.float)
|
| 133 |
+
labels = torch.tensor(labels, dtype=torch.long)
|
| 134 |
+
|
| 135 |
+
image = Image.open(annotation.filename).convert('RGB') # for some grayscale images
|
| 136 |
+
|
| 137 |
+
# random flip on only training mode
|
| 138 |
+
if self._mode == COCO2017Person.Mode.TRAIN and random.random() > 0.5:
|
| 139 |
+
image = ImageOps.mirror(image)
|
| 140 |
+
bboxes[:, [0, 2]] = image.width - bboxes[:, [2, 0]] # index 0 and 2 represent `left` and `right` respectively
|
| 141 |
+
|
| 142 |
+
image, scale = COCO2017Person.preprocess(image, self._image_min_side, self._image_max_side)
|
| 143 |
+
scale = torch.tensor(scale, dtype=torch.float)
|
| 144 |
+
bboxes *= scale
|
| 145 |
+
|
| 146 |
+
return image_id, image, scale, bboxes, labels
|
| 147 |
+
|
| 148 |
+
def evaluate(self, path_to_results_dir: str, image_ids: List[str], bboxes: List[List[float]], classes: List[int], probs: List[float]) -> Tuple[float, str]:
|
| 149 |
+
self._write_results(path_to_results_dir, image_ids, bboxes, classes, probs)
|
| 150 |
+
|
| 151 |
+
annType = 'bbox'
|
| 152 |
+
path_to_coco_dir = os.path.join(self._path_to_data_dir, 'COCO')
|
| 153 |
+
path_to_annotations_dir = os.path.join(path_to_coco_dir, 'annotations')
|
| 154 |
+
path_to_annotation = os.path.join(path_to_annotations_dir, 'instances_val2017.json')
|
| 155 |
+
|
| 156 |
+
cocoGt = COCO(path_to_annotation)
|
| 157 |
+
cocoDt = cocoGt.loadRes(os.path.join(path_to_results_dir, 'results.json'))
|
| 158 |
+
|
| 159 |
+
cocoEval = COCOeval(cocoGt, cocoDt, annType)
|
| 160 |
+
cocoEval.params.catIds = COCO2017.CATEGORY_TO_LABEL_DICT['person'] # filtering label should refer to original `COCO2017` dataset
|
| 161 |
+
cocoEval.evaluate()
|
| 162 |
+
cocoEval.accumulate()
|
| 163 |
+
|
| 164 |
+
original_stdout = sys.stdout
|
| 165 |
+
string_stdout = StringIO()
|
| 166 |
+
sys.stdout = string_stdout
|
| 167 |
+
cocoEval.summarize()
|
| 168 |
+
sys.stdout = original_stdout
|
| 169 |
+
|
| 170 |
+
mean_ap = cocoEval.stats[0].item() # stats[0] records AP@[0.5:0.95]
|
| 171 |
+
detail = string_stdout.getvalue()
|
| 172 |
+
|
| 173 |
+
return mean_ap, detail
|
| 174 |
+
|
| 175 |
+
def _write_results(self, path_to_results_dir: str, image_ids: List[str], bboxes: List[List[float]], classes: List[int], probs: List[float]):
|
| 176 |
+
results = []
|
| 177 |
+
for image_id, bbox, cls, prob in zip(image_ids, bboxes, classes, probs):
|
| 178 |
+
results.append(
|
| 179 |
+
{
|
| 180 |
+
'image_id': int(image_id), # COCO evaluation requires `image_id` to be type `int`
|
| 181 |
+
'category_id': COCO2017.CATEGORY_TO_LABEL_DICT[COCO2017Person.LABEL_TO_CATEGORY_DICT[cls]], # mapping to original `COCO2017` dataset
|
| 182 |
+
'bbox': [ # format [left, top, width, height] is expected
|
| 183 |
+
bbox[0],
|
| 184 |
+
bbox[1],
|
| 185 |
+
bbox[2] - bbox[0],
|
| 186 |
+
bbox[3] - bbox[1]
|
| 187 |
+
],
|
| 188 |
+
'score': prob
|
| 189 |
+
}
|
| 190 |
+
)
|
| 191 |
+
|
| 192 |
+
with open(os.path.join(path_to_results_dir, 'results.json'), 'w') as f:
|
| 193 |
+
json.dump(results, f)
|
| 194 |
+
|
| 195 |
+
@property
|
| 196 |
+
def image_ratios(self) -> List[float]:
|
| 197 |
+
return self._image_ratios
|
| 198 |
+
|
| 199 |
+
@staticmethod
|
| 200 |
+
def num_classes() -> int:
|
| 201 |
+
return 2
|
dataset/voc2007.py
ADDED
|
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
import xml.etree.ElementTree as ET
|
| 4 |
+
from typing import List, Tuple
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
import torch.utils.data
|
| 8 |
+
from PIL import Image, ImageOps
|
| 9 |
+
from torch import Tensor
|
| 10 |
+
|
| 11 |
+
from bbox import BBox
|
| 12 |
+
from dataset.base import Base
|
| 13 |
+
from voc_eval import voc_eval
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class VOC2007(Base):
|
| 17 |
+
|
| 18 |
+
class Annotation(object):
|
| 19 |
+
class Object(object):
|
| 20 |
+
def __init__(self, name: str, difficult: bool, bbox: BBox):
|
| 21 |
+
super().__init__()
|
| 22 |
+
self.name = name
|
| 23 |
+
self.difficult = difficult
|
| 24 |
+
self.bbox = bbox
|
| 25 |
+
|
| 26 |
+
def __repr__(self) -> str:
|
| 27 |
+
return 'Object[name={:s}, difficult={!s}, bbox={!s}]'.format(
|
| 28 |
+
self.name, self.difficult, self.bbox)
|
| 29 |
+
|
| 30 |
+
def __init__(self, filename: str, objects: List[Object]):
|
| 31 |
+
super().__init__()
|
| 32 |
+
self.filename = filename
|
| 33 |
+
self.objects = objects
|
| 34 |
+
|
| 35 |
+
CATEGORY_TO_LABEL_DICT = {
|
| 36 |
+
'background': 0,
|
| 37 |
+
'aeroplane': 1, 'bicycle': 2, 'bird': 3, 'boat': 4, 'bottle': 5,
|
| 38 |
+
'bus': 6, 'car': 7, 'cat': 8, 'chair': 9, 'cow': 10,
|
| 39 |
+
'diningtable': 11, 'dog': 12, 'horse': 13, 'motorbike': 14, 'person': 15,
|
| 40 |
+
'pottedplant': 16, 'sheep': 17, 'sofa': 18, 'train': 19, 'tvmonitor': 20
|
| 41 |
+
}
|
| 42 |
+
|
| 43 |
+
LABEL_TO_CATEGORY_DICT = {v: k for k, v in CATEGORY_TO_LABEL_DICT.items()}
|
| 44 |
+
|
| 45 |
+
def __init__(self, path_to_data_dir: str, mode: Base.Mode, image_min_side: float, image_max_side: float):
|
| 46 |
+
super().__init__(path_to_data_dir, mode, image_min_side, image_max_side)
|
| 47 |
+
|
| 48 |
+
path_to_voc2007_dir = os.path.join(self._path_to_data_dir, 'VOCdevkit', 'VOC2007')
|
| 49 |
+
path_to_imagesets_main_dir = os.path.join(path_to_voc2007_dir, 'ImageSets', 'Main')
|
| 50 |
+
path_to_annotations_dir = os.path.join(path_to_voc2007_dir, 'Annotations')
|
| 51 |
+
self._path_to_jpeg_images_dir = os.path.join(path_to_voc2007_dir, 'JPEGImages')
|
| 52 |
+
|
| 53 |
+
if self._mode == VOC2007.Mode.TRAIN:
|
| 54 |
+
path_to_image_ids_txt = os.path.join(path_to_imagesets_main_dir, 'trainval.txt')
|
| 55 |
+
elif self._mode == VOC2007.Mode.EVAL:
|
| 56 |
+
path_to_image_ids_txt = os.path.join(path_to_imagesets_main_dir, 'test.txt')
|
| 57 |
+
else:
|
| 58 |
+
raise ValueError('invalid mode')
|
| 59 |
+
|
| 60 |
+
with open(path_to_image_ids_txt, 'r') as f:
|
| 61 |
+
lines = f.readlines()
|
| 62 |
+
self._image_ids = [line.rstrip() for line in lines]
|
| 63 |
+
|
| 64 |
+
self._image_id_to_annotation_dict = {}
|
| 65 |
+
self._image_ratios = []
|
| 66 |
+
|
| 67 |
+
for image_id in self._image_ids:
|
| 68 |
+
path_to_annotation_xml = os.path.join(path_to_annotations_dir, f'{image_id}.xml')
|
| 69 |
+
tree = ET.ElementTree(file=path_to_annotation_xml)
|
| 70 |
+
root = tree.getroot()
|
| 71 |
+
|
| 72 |
+
self._image_id_to_annotation_dict[image_id] = VOC2007.Annotation(
|
| 73 |
+
filename=root.find('filename').text,
|
| 74 |
+
objects=[VOC2007.Annotation.Object(
|
| 75 |
+
name=next(tag_object.iterfind('name')).text,
|
| 76 |
+
difficult=next(tag_object.iterfind('difficult')).text == '1',
|
| 77 |
+
bbox=BBox( # convert to 0-based pixel index
|
| 78 |
+
left=float(next(tag_object.iterfind('bndbox/xmin')).text) - 1,
|
| 79 |
+
top=float(next(tag_object.iterfind('bndbox/ymin')).text) - 1,
|
| 80 |
+
right=float(next(tag_object.iterfind('bndbox/xmax')).text) - 1,
|
| 81 |
+
bottom=float(next(tag_object.iterfind('bndbox/ymax')).text) - 1
|
| 82 |
+
)
|
| 83 |
+
) for tag_object in root.iterfind('object')]
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
width = int(root.find('size/width').text)
|
| 87 |
+
height = int(root.find('size/height').text)
|
| 88 |
+
ratio = float(width / height)
|
| 89 |
+
self._image_ratios.append(ratio)
|
| 90 |
+
|
| 91 |
+
def __len__(self) -> int:
|
| 92 |
+
return len(self._image_id_to_annotation_dict)
|
| 93 |
+
|
| 94 |
+
def __getitem__(self, index: int) -> Tuple[str, Tensor, Tensor, Tensor, Tensor]:
|
| 95 |
+
image_id = self._image_ids[index]
|
| 96 |
+
annotation = self._image_id_to_annotation_dict[image_id]
|
| 97 |
+
|
| 98 |
+
bboxes = [obj.bbox.tolist() for obj in annotation.objects if not obj.difficult]
|
| 99 |
+
labels = [VOC2007.CATEGORY_TO_LABEL_DICT[obj.name] for obj in annotation.objects if not obj.difficult]
|
| 100 |
+
|
| 101 |
+
bboxes = torch.tensor(bboxes, dtype=torch.float)
|
| 102 |
+
labels = torch.tensor(labels, dtype=torch.long)
|
| 103 |
+
|
| 104 |
+
image = Image.open(os.path.join(self._path_to_jpeg_images_dir, annotation.filename))
|
| 105 |
+
|
| 106 |
+
# random flip on only training mode
|
| 107 |
+
if self._mode == VOC2007.Mode.TRAIN and random.random() > 0.5:
|
| 108 |
+
image = ImageOps.mirror(image)
|
| 109 |
+
bboxes[:, [0, 2]] = image.width - bboxes[:, [2, 0]] # index 0 and 2 represent `left` and `right` respectively
|
| 110 |
+
|
| 111 |
+
image, scale = VOC2007.preprocess(image, self._image_min_side, self._image_max_side)
|
| 112 |
+
scale = torch.tensor(scale, dtype=torch.float)
|
| 113 |
+
bboxes *= scale
|
| 114 |
+
|
| 115 |
+
return image_id, image, scale, bboxes, labels
|
| 116 |
+
|
| 117 |
+
def evaluate(self, path_to_results_dir: str, image_ids: List[str], bboxes: List[List[float]], classes: List[int], probs: List[float]) -> Tuple[float, str]:
|
| 118 |
+
self._write_results(path_to_results_dir, image_ids, bboxes, classes, probs)
|
| 119 |
+
|
| 120 |
+
path_to_voc2007_dir = os.path.join(self._path_to_data_dir, 'VOCdevkit', 'VOC2007')
|
| 121 |
+
path_to_main_dir = os.path.join(path_to_voc2007_dir, 'ImageSets', 'Main')
|
| 122 |
+
path_to_annotations_dir = os.path.join(path_to_voc2007_dir, 'Annotations')
|
| 123 |
+
|
| 124 |
+
class_to_ap_dict = {}
|
| 125 |
+
for c in range(1, VOC2007.num_classes()):
|
| 126 |
+
category = VOC2007.LABEL_TO_CATEGORY_DICT[c]
|
| 127 |
+
try:
|
| 128 |
+
path_to_cache_dir = os.path.join('caches', 'voc2007')
|
| 129 |
+
os.makedirs(path_to_cache_dir, exist_ok=True)
|
| 130 |
+
_, _, ap = voc_eval(detpath=path_to_results_dir+'/comp3_det_test_{:s}.txt'.format(category),
|
| 131 |
+
annopath=path_to_annotations_dir+'/{:s}.xml',
|
| 132 |
+
imagesetfile=os.path.join(path_to_main_dir, 'test.txt'),
|
| 133 |
+
classname=category,
|
| 134 |
+
cachedir=path_to_cache_dir,
|
| 135 |
+
ovthresh=0.5,
|
| 136 |
+
use_07_metric=True)
|
| 137 |
+
except IndexError:
|
| 138 |
+
ap = 0
|
| 139 |
+
|
| 140 |
+
class_to_ap_dict[c] = ap
|
| 141 |
+
|
| 142 |
+
mean_ap = np.mean([v for k, v in class_to_ap_dict.items()]).item()
|
| 143 |
+
|
| 144 |
+
detail = ''
|
| 145 |
+
for c in range(1, VOC2007.num_classes()):
|
| 146 |
+
detail += '{:d}: {:s} AP = {:.4f}\n'.format(c, VOC2007.LABEL_TO_CATEGORY_DICT[c], class_to_ap_dict[c])
|
| 147 |
+
|
| 148 |
+
return mean_ap, detail
|
| 149 |
+
|
| 150 |
+
def _write_results(self, path_to_results_dir: str, image_ids: List[str], bboxes: List[List[float]], classes: List[int], probs: List[float]):
|
| 151 |
+
class_to_txt_files_dict = {}
|
| 152 |
+
for c in range(1, VOC2007.num_classes()):
|
| 153 |
+
class_to_txt_files_dict[c] = open(os.path.join(path_to_results_dir, 'comp3_det_test_{:s}.txt'.format(VOC2007.LABEL_TO_CATEGORY_DICT[c])), 'w')
|
| 154 |
+
|
| 155 |
+
for image_id, bbox, cls, prob in zip(image_ids, bboxes, classes, probs):
|
| 156 |
+
class_to_txt_files_dict[cls].write('{:s} {:f} {:f} {:f} {:f} {:f}\n'.format(image_id, prob,
|
| 157 |
+
bbox[0], bbox[1], bbox[2], bbox[3]))
|
| 158 |
+
|
| 159 |
+
for _, f in class_to_txt_files_dict.items():
|
| 160 |
+
f.close()
|
| 161 |
+
|
| 162 |
+
@property
|
| 163 |
+
def image_ratios(self) -> List[float]:
|
| 164 |
+
return self._image_ratios
|
| 165 |
+
|
| 166 |
+
@staticmethod
|
| 167 |
+
def num_classes() -> int:
|
| 168 |
+
return 21
|
dataset/voc2007_cat_dog.py
ADDED
|
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
import xml.etree.ElementTree as ET
|
| 4 |
+
from typing import List, Tuple
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
import torch.utils.data
|
| 8 |
+
from PIL import Image, ImageOps
|
| 9 |
+
from torch import Tensor
|
| 10 |
+
|
| 11 |
+
from bbox import BBox
|
| 12 |
+
from dataset.base import Base
|
| 13 |
+
from voc_eval import voc_eval
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class VOC2007CatDog(Base):
|
| 17 |
+
|
| 18 |
+
class Annotation(object):
|
| 19 |
+
class Object(object):
|
| 20 |
+
def __init__(self, name: str, difficult: bool, bbox: BBox):
|
| 21 |
+
super().__init__()
|
| 22 |
+
self.name = name
|
| 23 |
+
self.difficult = difficult
|
| 24 |
+
self.bbox = bbox
|
| 25 |
+
|
| 26 |
+
def __repr__(self) -> str:
|
| 27 |
+
return 'Object[name={:s}, difficult={!s}, bbox={!s}]'.format(
|
| 28 |
+
self.name, self.difficult, self.bbox)
|
| 29 |
+
|
| 30 |
+
def __init__(self, filename: str, objects: List[Object]):
|
| 31 |
+
super().__init__()
|
| 32 |
+
self.filename = filename
|
| 33 |
+
self.objects = objects
|
| 34 |
+
|
| 35 |
+
CATEGORY_TO_LABEL_DICT = {
|
| 36 |
+
'background': 0,
|
| 37 |
+
'cat': 1, 'dog': 2
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
LABEL_TO_CATEGORY_DICT = {v: k for k, v in CATEGORY_TO_LABEL_DICT.items()}
|
| 41 |
+
|
| 42 |
+
def __init__(self, path_to_data_dir: str, mode: Base.Mode, image_min_side: float, image_max_side: float):
|
| 43 |
+
super().__init__(path_to_data_dir, mode, image_min_side, image_max_side)
|
| 44 |
+
|
| 45 |
+
path_to_voc2007_dir = os.path.join(self._path_to_data_dir, 'VOCdevkit', 'VOC2007')
|
| 46 |
+
path_to_imagesets_main_dir = os.path.join(path_to_voc2007_dir, 'ImageSets', 'Main')
|
| 47 |
+
path_to_annotations_dir = os.path.join(path_to_voc2007_dir, 'Annotations')
|
| 48 |
+
self._path_to_jpeg_images_dir = os.path.join(path_to_voc2007_dir, 'JPEGImages')
|
| 49 |
+
|
| 50 |
+
if self._mode == VOC2007CatDog.Mode.TRAIN:
|
| 51 |
+
path_to_image_ids_txt = os.path.join(path_to_imagesets_main_dir, 'trainval.txt')
|
| 52 |
+
elif self._mode == VOC2007CatDog.Mode.EVAL:
|
| 53 |
+
path_to_image_ids_txt = os.path.join(path_to_imagesets_main_dir, 'test.txt')
|
| 54 |
+
else:
|
| 55 |
+
raise ValueError('invalid mode')
|
| 56 |
+
|
| 57 |
+
with open(path_to_image_ids_txt, 'r') as f:
|
| 58 |
+
lines = f.readlines()
|
| 59 |
+
image_ids = [line.rstrip() for line in lines]
|
| 60 |
+
|
| 61 |
+
self._image_id_to_annotation_dict = {}
|
| 62 |
+
self._image_ratios = []
|
| 63 |
+
|
| 64 |
+
for image_id in image_ids:
|
| 65 |
+
path_to_annotation_xml = os.path.join(path_to_annotations_dir, f'{image_id}.xml')
|
| 66 |
+
tree = ET.ElementTree(file=path_to_annotation_xml)
|
| 67 |
+
root = tree.getroot()
|
| 68 |
+
|
| 69 |
+
annotation = VOC2007CatDog.Annotation(
|
| 70 |
+
filename=root.find('filename').text,
|
| 71 |
+
objects=[VOC2007CatDog.Annotation.Object(
|
| 72 |
+
name=next(tag_object.iterfind('name')).text,
|
| 73 |
+
difficult=next(tag_object.iterfind('difficult')).text == '1',
|
| 74 |
+
bbox=BBox( # convert to 0-based pixel index
|
| 75 |
+
left=float(next(tag_object.iterfind('bndbox/xmin')).text) - 1,
|
| 76 |
+
top=float(next(tag_object.iterfind('bndbox/ymin')).text) - 1,
|
| 77 |
+
right=float(next(tag_object.iterfind('bndbox/xmax')).text) - 1,
|
| 78 |
+
bottom=float(next(tag_object.iterfind('bndbox/ymax')).text) - 1
|
| 79 |
+
)
|
| 80 |
+
) for tag_object in root.iterfind('object')]
|
| 81 |
+
)
|
| 82 |
+
annotation.objects = [obj for obj in annotation.objects if obj.name in ['cat', 'dog'] and not obj.difficult]
|
| 83 |
+
|
| 84 |
+
if len(annotation.objects) > 0:
|
| 85 |
+
self._image_id_to_annotation_dict[image_id] = annotation
|
| 86 |
+
|
| 87 |
+
width = int(root.find('size/width').text)
|
| 88 |
+
height = int(root.find('size/height').text)
|
| 89 |
+
ratio = float(width / height)
|
| 90 |
+
self._image_ratios.append(ratio)
|
| 91 |
+
|
| 92 |
+
self._image_ids = list(self._image_id_to_annotation_dict.keys())
|
| 93 |
+
|
| 94 |
+
def __len__(self) -> int:
|
| 95 |
+
return len(self._image_id_to_annotation_dict)
|
| 96 |
+
|
| 97 |
+
def __getitem__(self, index: int) -> Tuple[str, Tensor, Tensor, Tensor, Tensor]:
|
| 98 |
+
image_id = self._image_ids[index]
|
| 99 |
+
annotation = self._image_id_to_annotation_dict[image_id]
|
| 100 |
+
|
| 101 |
+
bboxes = [obj.bbox.tolist() for obj in annotation.objects]
|
| 102 |
+
labels = [VOC2007CatDog.CATEGORY_TO_LABEL_DICT[obj.name] for obj in annotation.objects]
|
| 103 |
+
|
| 104 |
+
bboxes = torch.tensor(bboxes, dtype=torch.float)
|
| 105 |
+
labels = torch.tensor(labels, dtype=torch.long)
|
| 106 |
+
|
| 107 |
+
image = Image.open(os.path.join(self._path_to_jpeg_images_dir, annotation.filename))
|
| 108 |
+
|
| 109 |
+
# random flip on only training mode
|
| 110 |
+
if self._mode == VOC2007CatDog.Mode.TRAIN and random.random() > 0.5:
|
| 111 |
+
image = ImageOps.mirror(image)
|
| 112 |
+
bboxes[:, [0, 2]] = image.width - bboxes[:, [2, 0]] # index 0 and 2 represent `left` and `right` respectively
|
| 113 |
+
|
| 114 |
+
image, scale = VOC2007CatDog.preprocess(image, self._image_min_side, self._image_max_side)
|
| 115 |
+
scale = torch.tensor(scale, dtype=torch.float)
|
| 116 |
+
bboxes *= scale
|
| 117 |
+
|
| 118 |
+
return image_id, image, scale, bboxes, labels
|
| 119 |
+
|
| 120 |
+
def evaluate(self, path_to_results_dir: str, image_ids: List[str], bboxes: List[List[float]], classes: List[int], probs: List[float]) -> Tuple[float, str]:
|
| 121 |
+
self._write_results(path_to_results_dir, image_ids, bboxes, classes, probs)
|
| 122 |
+
|
| 123 |
+
path_to_voc2007_dir = os.path.join(self._path_to_data_dir, 'VOCdevkit', 'VOC2007')
|
| 124 |
+
path_to_main_dir = os.path.join(path_to_voc2007_dir, 'ImageSets', 'Main')
|
| 125 |
+
path_to_annotations_dir = os.path.join(path_to_voc2007_dir, 'Annotations')
|
| 126 |
+
|
| 127 |
+
class_to_ap_dict = {}
|
| 128 |
+
for c in range(1, VOC2007CatDog.num_classes()):
|
| 129 |
+
category = VOC2007CatDog.LABEL_TO_CATEGORY_DICT[c]
|
| 130 |
+
try:
|
| 131 |
+
path_to_cache_dir = os.path.join('caches', 'voc2007-cat-dog')
|
| 132 |
+
os.makedirs(path_to_cache_dir, exist_ok=True)
|
| 133 |
+
_, _, ap = voc_eval(detpath=os.path.join(path_to_results_dir, 'comp3_det_test_{:s}.txt'.format(category)),
|
| 134 |
+
annopath=os.path.join(path_to_annotations_dir, '{:s}.xml'),
|
| 135 |
+
imagesetfile=os.path.join(path_to_main_dir, 'test.txt'),
|
| 136 |
+
classname=category,
|
| 137 |
+
cachedir=path_to_cache_dir,
|
| 138 |
+
ovthresh=0.5,
|
| 139 |
+
use_07_metric=True)
|
| 140 |
+
except IndexError:
|
| 141 |
+
ap = 0
|
| 142 |
+
|
| 143 |
+
class_to_ap_dict[c] = ap
|
| 144 |
+
|
| 145 |
+
mean_ap = np.mean([v for k, v in class_to_ap_dict.items()]).item()
|
| 146 |
+
|
| 147 |
+
detail = ''
|
| 148 |
+
for c in range(1, VOC2007CatDog.num_classes()):
|
| 149 |
+
detail += '{:d}: {:s} AP = {:.4f}\n'.format(c, VOC2007CatDog.LABEL_TO_CATEGORY_DICT[c], class_to_ap_dict[c])
|
| 150 |
+
|
| 151 |
+
return mean_ap, detail
|
| 152 |
+
|
| 153 |
+
def _write_results(self, path_to_results_dir: str, image_ids: List[str], bboxes: List[List[float]], classes: List[int], probs: List[float]):
|
| 154 |
+
class_to_txt_files_dict = {}
|
| 155 |
+
for c in range(1, VOC2007CatDog.num_classes()):
|
| 156 |
+
class_to_txt_files_dict[c] = open(os.path.join(path_to_results_dir, 'comp3_det_test_{:s}.txt'.format(VOC2007CatDog.LABEL_TO_CATEGORY_DICT[c])), 'w')
|
| 157 |
+
|
| 158 |
+
for image_id, bbox, cls, prob in zip(image_ids, bboxes, classes, probs):
|
| 159 |
+
class_to_txt_files_dict[cls].write('{:s} {:f} {:f} {:f} {:f} {:f}\n'.format(image_id, prob,
|
| 160 |
+
bbox[0], bbox[1], bbox[2], bbox[3]))
|
| 161 |
+
|
| 162 |
+
for _, f in class_to_txt_files_dict.items():
|
| 163 |
+
f.close()
|
| 164 |
+
|
| 165 |
+
@property
|
| 166 |
+
def image_ratios(self) -> List[float]:
|
| 167 |
+
return self._image_ratios
|
| 168 |
+
|
| 169 |
+
@staticmethod
|
| 170 |
+
def num_classes() -> int:
|
| 171 |
+
return 3
|
extension/functional.py
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
|
| 3 |
+
from torch import Tensor
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def beta_smooth_l1_loss(input: Tensor, target: Tensor, beta: float) -> Tensor:
|
| 7 |
+
diff = torch.abs(input - target)
|
| 8 |
+
loss = torch.where(diff < beta, 0.5 * diff ** 2 / beta, diff - 0.5 * beta)
|
| 9 |
+
loss = loss.sum() / (input.numel() + 1e-8)
|
| 10 |
+
return loss
|
extension/lr_scheduler.py
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List
|
| 2 |
+
|
| 3 |
+
from torch.optim import Optimizer
|
| 4 |
+
from torch.optim.lr_scheduler import MultiStepLR
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class WarmUpMultiStepLR(MultiStepLR):
|
| 8 |
+
def __init__(self, optimizer: Optimizer, milestones: List[int], gamma: float = 0.1,
|
| 9 |
+
factor: float = 0.3333, num_iters: int = 500, last_epoch: int = -1):
|
| 10 |
+
self.factor = factor
|
| 11 |
+
self.num_iters = num_iters
|
| 12 |
+
super().__init__(optimizer, milestones, gamma, last_epoch)
|
| 13 |
+
|
| 14 |
+
def get_lr(self) -> List[float]:
|
| 15 |
+
if self.last_epoch < self.num_iters:
|
| 16 |
+
alpha = self.last_epoch / self.num_iters
|
| 17 |
+
factor = (1 - self.factor) * alpha + self.factor
|
| 18 |
+
return [lr * factor for lr in super()._get_closed_form_lr()]
|
| 19 |
+
else:
|
| 20 |
+
factor = 1
|
| 21 |
+
return [lr for lr in super().get_lr()]
|
| 22 |
+
|
| 23 |
+
return [lr * factor for lr in super()._get_closed_form_lr()]
|
models/MobileNetSSD_deploy.caffemodel
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:761c86fbae3d8361dd454f7c740a964f62975ed32f4324b8b85994edec30f6af
|
| 3 |
+
size 23147564
|
models/MobileNetSSD_deploy.prototxt.txt
ADDED
|
@@ -0,0 +1,1912 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
name: "MobileNet-SSD"
|
| 2 |
+
input: "data"
|
| 3 |
+
input_shape {
|
| 4 |
+
dim: 1
|
| 5 |
+
dim: 3
|
| 6 |
+
dim: 300
|
| 7 |
+
dim: 300
|
| 8 |
+
}
|
| 9 |
+
layer {
|
| 10 |
+
name: "conv0"
|
| 11 |
+
type: "Convolution"
|
| 12 |
+
bottom: "data"
|
| 13 |
+
top: "conv0"
|
| 14 |
+
param {
|
| 15 |
+
lr_mult: 1.0
|
| 16 |
+
decay_mult: 1.0
|
| 17 |
+
}
|
| 18 |
+
param {
|
| 19 |
+
lr_mult: 2.0
|
| 20 |
+
decay_mult: 0.0
|
| 21 |
+
}
|
| 22 |
+
convolution_param {
|
| 23 |
+
num_output: 32
|
| 24 |
+
pad: 1
|
| 25 |
+
kernel_size: 3
|
| 26 |
+
stride: 2
|
| 27 |
+
weight_filler {
|
| 28 |
+
type: "msra"
|
| 29 |
+
}
|
| 30 |
+
bias_filler {
|
| 31 |
+
type: "constant"
|
| 32 |
+
value: 0.0
|
| 33 |
+
}
|
| 34 |
+
}
|
| 35 |
+
}
|
| 36 |
+
layer {
|
| 37 |
+
name: "conv0/relu"
|
| 38 |
+
type: "ReLU"
|
| 39 |
+
bottom: "conv0"
|
| 40 |
+
top: "conv0"
|
| 41 |
+
}
|
| 42 |
+
layer {
|
| 43 |
+
name: "conv1/dw"
|
| 44 |
+
type: "Convolution"
|
| 45 |
+
bottom: "conv0"
|
| 46 |
+
top: "conv1/dw"
|
| 47 |
+
param {
|
| 48 |
+
lr_mult: 1.0
|
| 49 |
+
decay_mult: 1.0
|
| 50 |
+
}
|
| 51 |
+
param {
|
| 52 |
+
lr_mult: 2.0
|
| 53 |
+
decay_mult: 0.0
|
| 54 |
+
}
|
| 55 |
+
convolution_param {
|
| 56 |
+
num_output: 32
|
| 57 |
+
pad: 1
|
| 58 |
+
kernel_size: 3
|
| 59 |
+
group: 32
|
| 60 |
+
engine: CAFFE
|
| 61 |
+
weight_filler {
|
| 62 |
+
type: "msra"
|
| 63 |
+
}
|
| 64 |
+
bias_filler {
|
| 65 |
+
type: "constant"
|
| 66 |
+
value: 0.0
|
| 67 |
+
}
|
| 68 |
+
}
|
| 69 |
+
}
|
| 70 |
+
layer {
|
| 71 |
+
name: "conv1/dw/relu"
|
| 72 |
+
type: "ReLU"
|
| 73 |
+
bottom: "conv1/dw"
|
| 74 |
+
top: "conv1/dw"
|
| 75 |
+
}
|
| 76 |
+
layer {
|
| 77 |
+
name: "conv1"
|
| 78 |
+
type: "Convolution"
|
| 79 |
+
bottom: "conv1/dw"
|
| 80 |
+
top: "conv1"
|
| 81 |
+
param {
|
| 82 |
+
lr_mult: 1.0
|
| 83 |
+
decay_mult: 1.0
|
| 84 |
+
}
|
| 85 |
+
param {
|
| 86 |
+
lr_mult: 2.0
|
| 87 |
+
decay_mult: 0.0
|
| 88 |
+
}
|
| 89 |
+
convolution_param {
|
| 90 |
+
num_output: 64
|
| 91 |
+
kernel_size: 1
|
| 92 |
+
weight_filler {
|
| 93 |
+
type: "msra"
|
| 94 |
+
}
|
| 95 |
+
bias_filler {
|
| 96 |
+
type: "constant"
|
| 97 |
+
value: 0.0
|
| 98 |
+
}
|
| 99 |
+
}
|
| 100 |
+
}
|
| 101 |
+
layer {
|
| 102 |
+
name: "conv1/relu"
|
| 103 |
+
type: "ReLU"
|
| 104 |
+
bottom: "conv1"
|
| 105 |
+
top: "conv1"
|
| 106 |
+
}
|
| 107 |
+
layer {
|
| 108 |
+
name: "conv2/dw"
|
| 109 |
+
type: "Convolution"
|
| 110 |
+
bottom: "conv1"
|
| 111 |
+
top: "conv2/dw"
|
| 112 |
+
param {
|
| 113 |
+
lr_mult: 1.0
|
| 114 |
+
decay_mult: 1.0
|
| 115 |
+
}
|
| 116 |
+
param {
|
| 117 |
+
lr_mult: 2.0
|
| 118 |
+
decay_mult: 0.0
|
| 119 |
+
}
|
| 120 |
+
convolution_param {
|
| 121 |
+
num_output: 64
|
| 122 |
+
pad: 1
|
| 123 |
+
kernel_size: 3
|
| 124 |
+
stride: 2
|
| 125 |
+
group: 64
|
| 126 |
+
engine: CAFFE
|
| 127 |
+
weight_filler {
|
| 128 |
+
type: "msra"
|
| 129 |
+
}
|
| 130 |
+
bias_filler {
|
| 131 |
+
type: "constant"
|
| 132 |
+
value: 0.0
|
| 133 |
+
}
|
| 134 |
+
}
|
| 135 |
+
}
|
| 136 |
+
layer {
|
| 137 |
+
name: "conv2/dw/relu"
|
| 138 |
+
type: "ReLU"
|
| 139 |
+
bottom: "conv2/dw"
|
| 140 |
+
top: "conv2/dw"
|
| 141 |
+
}
|
| 142 |
+
layer {
|
| 143 |
+
name: "conv2"
|
| 144 |
+
type: "Convolution"
|
| 145 |
+
bottom: "conv2/dw"
|
| 146 |
+
top: "conv2"
|
| 147 |
+
param {
|
| 148 |
+
lr_mult: 1.0
|
| 149 |
+
decay_mult: 1.0
|
| 150 |
+
}
|
| 151 |
+
param {
|
| 152 |
+
lr_mult: 2.0
|
| 153 |
+
decay_mult: 0.0
|
| 154 |
+
}
|
| 155 |
+
convolution_param {
|
| 156 |
+
num_output: 128
|
| 157 |
+
kernel_size: 1
|
| 158 |
+
weight_filler {
|
| 159 |
+
type: "msra"
|
| 160 |
+
}
|
| 161 |
+
bias_filler {
|
| 162 |
+
type: "constant"
|
| 163 |
+
value: 0.0
|
| 164 |
+
}
|
| 165 |
+
}
|
| 166 |
+
}
|
| 167 |
+
layer {
|
| 168 |
+
name: "conv2/relu"
|
| 169 |
+
type: "ReLU"
|
| 170 |
+
bottom: "conv2"
|
| 171 |
+
top: "conv2"
|
| 172 |
+
}
|
| 173 |
+
layer {
|
| 174 |
+
name: "conv3/dw"
|
| 175 |
+
type: "Convolution"
|
| 176 |
+
bottom: "conv2"
|
| 177 |
+
top: "conv3/dw"
|
| 178 |
+
param {
|
| 179 |
+
lr_mult: 1.0
|
| 180 |
+
decay_mult: 1.0
|
| 181 |
+
}
|
| 182 |
+
param {
|
| 183 |
+
lr_mult: 2.0
|
| 184 |
+
decay_mult: 0.0
|
| 185 |
+
}
|
| 186 |
+
convolution_param {
|
| 187 |
+
num_output: 128
|
| 188 |
+
pad: 1
|
| 189 |
+
kernel_size: 3
|
| 190 |
+
group: 128
|
| 191 |
+
engine: CAFFE
|
| 192 |
+
weight_filler {
|
| 193 |
+
type: "msra"
|
| 194 |
+
}
|
| 195 |
+
bias_filler {
|
| 196 |
+
type: "constant"
|
| 197 |
+
value: 0.0
|
| 198 |
+
}
|
| 199 |
+
}
|
| 200 |
+
}
|
| 201 |
+
layer {
|
| 202 |
+
name: "conv3/dw/relu"
|
| 203 |
+
type: "ReLU"
|
| 204 |
+
bottom: "conv3/dw"
|
| 205 |
+
top: "conv3/dw"
|
| 206 |
+
}
|
| 207 |
+
layer {
|
| 208 |
+
name: "conv3"
|
| 209 |
+
type: "Convolution"
|
| 210 |
+
bottom: "conv3/dw"
|
| 211 |
+
top: "conv3"
|
| 212 |
+
param {
|
| 213 |
+
lr_mult: 1.0
|
| 214 |
+
decay_mult: 1.0
|
| 215 |
+
}
|
| 216 |
+
param {
|
| 217 |
+
lr_mult: 2.0
|
| 218 |
+
decay_mult: 0.0
|
| 219 |
+
}
|
| 220 |
+
convolution_param {
|
| 221 |
+
num_output: 128
|
| 222 |
+
kernel_size: 1
|
| 223 |
+
weight_filler {
|
| 224 |
+
type: "msra"
|
| 225 |
+
}
|
| 226 |
+
bias_filler {
|
| 227 |
+
type: "constant"
|
| 228 |
+
value: 0.0
|
| 229 |
+
}
|
| 230 |
+
}
|
| 231 |
+
}
|
| 232 |
+
layer {
|
| 233 |
+
name: "conv3/relu"
|
| 234 |
+
type: "ReLU"
|
| 235 |
+
bottom: "conv3"
|
| 236 |
+
top: "conv3"
|
| 237 |
+
}
|
| 238 |
+
layer {
|
| 239 |
+
name: "conv4/dw"
|
| 240 |
+
type: "Convolution"
|
| 241 |
+
bottom: "conv3"
|
| 242 |
+
top: "conv4/dw"
|
| 243 |
+
param {
|
| 244 |
+
lr_mult: 1.0
|
| 245 |
+
decay_mult: 1.0
|
| 246 |
+
}
|
| 247 |
+
param {
|
| 248 |
+
lr_mult: 2.0
|
| 249 |
+
decay_mult: 0.0
|
| 250 |
+
}
|
| 251 |
+
convolution_param {
|
| 252 |
+
num_output: 128
|
| 253 |
+
pad: 1
|
| 254 |
+
kernel_size: 3
|
| 255 |
+
stride: 2
|
| 256 |
+
group: 128
|
| 257 |
+
engine: CAFFE
|
| 258 |
+
weight_filler {
|
| 259 |
+
type: "msra"
|
| 260 |
+
}
|
| 261 |
+
bias_filler {
|
| 262 |
+
type: "constant"
|
| 263 |
+
value: 0.0
|
| 264 |
+
}
|
| 265 |
+
}
|
| 266 |
+
}
|
| 267 |
+
layer {
|
| 268 |
+
name: "conv4/dw/relu"
|
| 269 |
+
type: "ReLU"
|
| 270 |
+
bottom: "conv4/dw"
|
| 271 |
+
top: "conv4/dw"
|
| 272 |
+
}
|
| 273 |
+
layer {
|
| 274 |
+
name: "conv4"
|
| 275 |
+
type: "Convolution"
|
| 276 |
+
bottom: "conv4/dw"
|
| 277 |
+
top: "conv4"
|
| 278 |
+
param {
|
| 279 |
+
lr_mult: 1.0
|
| 280 |
+
decay_mult: 1.0
|
| 281 |
+
}
|
| 282 |
+
param {
|
| 283 |
+
lr_mult: 2.0
|
| 284 |
+
decay_mult: 0.0
|
| 285 |
+
}
|
| 286 |
+
convolution_param {
|
| 287 |
+
num_output: 256
|
| 288 |
+
kernel_size: 1
|
| 289 |
+
weight_filler {
|
| 290 |
+
type: "msra"
|
| 291 |
+
}
|
| 292 |
+
bias_filler {
|
| 293 |
+
type: "constant"
|
| 294 |
+
value: 0.0
|
| 295 |
+
}
|
| 296 |
+
}
|
| 297 |
+
}
|
| 298 |
+
layer {
|
| 299 |
+
name: "conv4/relu"
|
| 300 |
+
type: "ReLU"
|
| 301 |
+
bottom: "conv4"
|
| 302 |
+
top: "conv4"
|
| 303 |
+
}
|
| 304 |
+
layer {
|
| 305 |
+
name: "conv5/dw"
|
| 306 |
+
type: "Convolution"
|
| 307 |
+
bottom: "conv4"
|
| 308 |
+
top: "conv5/dw"
|
| 309 |
+
param {
|
| 310 |
+
lr_mult: 1.0
|
| 311 |
+
decay_mult: 1.0
|
| 312 |
+
}
|
| 313 |
+
param {
|
| 314 |
+
lr_mult: 2.0
|
| 315 |
+
decay_mult: 0.0
|
| 316 |
+
}
|
| 317 |
+
convolution_param {
|
| 318 |
+
num_output: 256
|
| 319 |
+
pad: 1
|
| 320 |
+
kernel_size: 3
|
| 321 |
+
group: 256
|
| 322 |
+
engine: CAFFE
|
| 323 |
+
weight_filler {
|
| 324 |
+
type: "msra"
|
| 325 |
+
}
|
| 326 |
+
bias_filler {
|
| 327 |
+
type: "constant"
|
| 328 |
+
value: 0.0
|
| 329 |
+
}
|
| 330 |
+
}
|
| 331 |
+
}
|
| 332 |
+
layer {
|
| 333 |
+
name: "conv5/dw/relu"
|
| 334 |
+
type: "ReLU"
|
| 335 |
+
bottom: "conv5/dw"
|
| 336 |
+
top: "conv5/dw"
|
| 337 |
+
}
|
| 338 |
+
layer {
|
| 339 |
+
name: "conv5"
|
| 340 |
+
type: "Convolution"
|
| 341 |
+
bottom: "conv5/dw"
|
| 342 |
+
top: "conv5"
|
| 343 |
+
param {
|
| 344 |
+
lr_mult: 1.0
|
| 345 |
+
decay_mult: 1.0
|
| 346 |
+
}
|
| 347 |
+
param {
|
| 348 |
+
lr_mult: 2.0
|
| 349 |
+
decay_mult: 0.0
|
| 350 |
+
}
|
| 351 |
+
convolution_param {
|
| 352 |
+
num_output: 256
|
| 353 |
+
kernel_size: 1
|
| 354 |
+
weight_filler {
|
| 355 |
+
type: "msra"
|
| 356 |
+
}
|
| 357 |
+
bias_filler {
|
| 358 |
+
type: "constant"
|
| 359 |
+
value: 0.0
|
| 360 |
+
}
|
| 361 |
+
}
|
| 362 |
+
}
|
| 363 |
+
layer {
|
| 364 |
+
name: "conv5/relu"
|
| 365 |
+
type: "ReLU"
|
| 366 |
+
bottom: "conv5"
|
| 367 |
+
top: "conv5"
|
| 368 |
+
}
|
| 369 |
+
layer {
|
| 370 |
+
name: "conv6/dw"
|
| 371 |
+
type: "Convolution"
|
| 372 |
+
bottom: "conv5"
|
| 373 |
+
top: "conv6/dw"
|
| 374 |
+
param {
|
| 375 |
+
lr_mult: 1.0
|
| 376 |
+
decay_mult: 1.0
|
| 377 |
+
}
|
| 378 |
+
param {
|
| 379 |
+
lr_mult: 2.0
|
| 380 |
+
decay_mult: 0.0
|
| 381 |
+
}
|
| 382 |
+
convolution_param {
|
| 383 |
+
num_output: 256
|
| 384 |
+
pad: 1
|
| 385 |
+
kernel_size: 3
|
| 386 |
+
stride: 2
|
| 387 |
+
group: 256
|
| 388 |
+
engine: CAFFE
|
| 389 |
+
weight_filler {
|
| 390 |
+
type: "msra"
|
| 391 |
+
}
|
| 392 |
+
bias_filler {
|
| 393 |
+
type: "constant"
|
| 394 |
+
value: 0.0
|
| 395 |
+
}
|
| 396 |
+
}
|
| 397 |
+
}
|
| 398 |
+
layer {
|
| 399 |
+
name: "conv6/dw/relu"
|
| 400 |
+
type: "ReLU"
|
| 401 |
+
bottom: "conv6/dw"
|
| 402 |
+
top: "conv6/dw"
|
| 403 |
+
}
|
| 404 |
+
layer {
|
| 405 |
+
name: "conv6"
|
| 406 |
+
type: "Convolution"
|
| 407 |
+
bottom: "conv6/dw"
|
| 408 |
+
top: "conv6"
|
| 409 |
+
param {
|
| 410 |
+
lr_mult: 1.0
|
| 411 |
+
decay_mult: 1.0
|
| 412 |
+
}
|
| 413 |
+
param {
|
| 414 |
+
lr_mult: 2.0
|
| 415 |
+
decay_mult: 0.0
|
| 416 |
+
}
|
| 417 |
+
convolution_param {
|
| 418 |
+
num_output: 512
|
| 419 |
+
kernel_size: 1
|
| 420 |
+
weight_filler {
|
| 421 |
+
type: "msra"
|
| 422 |
+
}
|
| 423 |
+
bias_filler {
|
| 424 |
+
type: "constant"
|
| 425 |
+
value: 0.0
|
| 426 |
+
}
|
| 427 |
+
}
|
| 428 |
+
}
|
| 429 |
+
layer {
|
| 430 |
+
name: "conv6/relu"
|
| 431 |
+
type: "ReLU"
|
| 432 |
+
bottom: "conv6"
|
| 433 |
+
top: "conv6"
|
| 434 |
+
}
|
| 435 |
+
layer {
|
| 436 |
+
name: "conv7/dw"
|
| 437 |
+
type: "Convolution"
|
| 438 |
+
bottom: "conv6"
|
| 439 |
+
top: "conv7/dw"
|
| 440 |
+
param {
|
| 441 |
+
lr_mult: 1.0
|
| 442 |
+
decay_mult: 1.0
|
| 443 |
+
}
|
| 444 |
+
param {
|
| 445 |
+
lr_mult: 2.0
|
| 446 |
+
decay_mult: 0.0
|
| 447 |
+
}
|
| 448 |
+
convolution_param {
|
| 449 |
+
num_output: 512
|
| 450 |
+
pad: 1
|
| 451 |
+
kernel_size: 3
|
| 452 |
+
group: 512
|
| 453 |
+
engine: CAFFE
|
| 454 |
+
weight_filler {
|
| 455 |
+
type: "msra"
|
| 456 |
+
}
|
| 457 |
+
bias_filler {
|
| 458 |
+
type: "constant"
|
| 459 |
+
value: 0.0
|
| 460 |
+
}
|
| 461 |
+
}
|
| 462 |
+
}
|
| 463 |
+
layer {
|
| 464 |
+
name: "conv7/dw/relu"
|
| 465 |
+
type: "ReLU"
|
| 466 |
+
bottom: "conv7/dw"
|
| 467 |
+
top: "conv7/dw"
|
| 468 |
+
}
|
| 469 |
+
layer {
|
| 470 |
+
name: "conv7"
|
| 471 |
+
type: "Convolution"
|
| 472 |
+
bottom: "conv7/dw"
|
| 473 |
+
top: "conv7"
|
| 474 |
+
param {
|
| 475 |
+
lr_mult: 1.0
|
| 476 |
+
decay_mult: 1.0
|
| 477 |
+
}
|
| 478 |
+
param {
|
| 479 |
+
lr_mult: 2.0
|
| 480 |
+
decay_mult: 0.0
|
| 481 |
+
}
|
| 482 |
+
convolution_param {
|
| 483 |
+
num_output: 512
|
| 484 |
+
kernel_size: 1
|
| 485 |
+
weight_filler {
|
| 486 |
+
type: "msra"
|
| 487 |
+
}
|
| 488 |
+
bias_filler {
|
| 489 |
+
type: "constant"
|
| 490 |
+
value: 0.0
|
| 491 |
+
}
|
| 492 |
+
}
|
| 493 |
+
}
|
| 494 |
+
layer {
|
| 495 |
+
name: "conv7/relu"
|
| 496 |
+
type: "ReLU"
|
| 497 |
+
bottom: "conv7"
|
| 498 |
+
top: "conv7"
|
| 499 |
+
}
|
| 500 |
+
layer {
|
| 501 |
+
name: "conv8/dw"
|
| 502 |
+
type: "Convolution"
|
| 503 |
+
bottom: "conv7"
|
| 504 |
+
top: "conv8/dw"
|
| 505 |
+
param {
|
| 506 |
+
lr_mult: 1.0
|
| 507 |
+
decay_mult: 1.0
|
| 508 |
+
}
|
| 509 |
+
param {
|
| 510 |
+
lr_mult: 2.0
|
| 511 |
+
decay_mult: 0.0
|
| 512 |
+
}
|
| 513 |
+
convolution_param {
|
| 514 |
+
num_output: 512
|
| 515 |
+
pad: 1
|
| 516 |
+
kernel_size: 3
|
| 517 |
+
group: 512
|
| 518 |
+
engine: CAFFE
|
| 519 |
+
weight_filler {
|
| 520 |
+
type: "msra"
|
| 521 |
+
}
|
| 522 |
+
bias_filler {
|
| 523 |
+
type: "constant"
|
| 524 |
+
value: 0.0
|
| 525 |
+
}
|
| 526 |
+
}
|
| 527 |
+
}
|
| 528 |
+
layer {
|
| 529 |
+
name: "conv8/dw/relu"
|
| 530 |
+
type: "ReLU"
|
| 531 |
+
bottom: "conv8/dw"
|
| 532 |
+
top: "conv8/dw"
|
| 533 |
+
}
|
| 534 |
+
layer {
|
| 535 |
+
name: "conv8"
|
| 536 |
+
type: "Convolution"
|
| 537 |
+
bottom: "conv8/dw"
|
| 538 |
+
top: "conv8"
|
| 539 |
+
param {
|
| 540 |
+
lr_mult: 1.0
|
| 541 |
+
decay_mult: 1.0
|
| 542 |
+
}
|
| 543 |
+
param {
|
| 544 |
+
lr_mult: 2.0
|
| 545 |
+
decay_mult: 0.0
|
| 546 |
+
}
|
| 547 |
+
convolution_param {
|
| 548 |
+
num_output: 512
|
| 549 |
+
kernel_size: 1
|
| 550 |
+
weight_filler {
|
| 551 |
+
type: "msra"
|
| 552 |
+
}
|
| 553 |
+
bias_filler {
|
| 554 |
+
type: "constant"
|
| 555 |
+
value: 0.0
|
| 556 |
+
}
|
| 557 |
+
}
|
| 558 |
+
}
|
| 559 |
+
layer {
|
| 560 |
+
name: "conv8/relu"
|
| 561 |
+
type: "ReLU"
|
| 562 |
+
bottom: "conv8"
|
| 563 |
+
top: "conv8"
|
| 564 |
+
}
|
| 565 |
+
layer {
|
| 566 |
+
name: "conv9/dw"
|
| 567 |
+
type: "Convolution"
|
| 568 |
+
bottom: "conv8"
|
| 569 |
+
top: "conv9/dw"
|
| 570 |
+
param {
|
| 571 |
+
lr_mult: 1.0
|
| 572 |
+
decay_mult: 1.0
|
| 573 |
+
}
|
| 574 |
+
param {
|
| 575 |
+
lr_mult: 2.0
|
| 576 |
+
decay_mult: 0.0
|
| 577 |
+
}
|
| 578 |
+
convolution_param {
|
| 579 |
+
num_output: 512
|
| 580 |
+
pad: 1
|
| 581 |
+
kernel_size: 3
|
| 582 |
+
group: 512
|
| 583 |
+
engine: CAFFE
|
| 584 |
+
weight_filler {
|
| 585 |
+
type: "msra"
|
| 586 |
+
}
|
| 587 |
+
bias_filler {
|
| 588 |
+
type: "constant"
|
| 589 |
+
value: 0.0
|
| 590 |
+
}
|
| 591 |
+
}
|
| 592 |
+
}
|
| 593 |
+
layer {
|
| 594 |
+
name: "conv9/dw/relu"
|
| 595 |
+
type: "ReLU"
|
| 596 |
+
bottom: "conv9/dw"
|
| 597 |
+
top: "conv9/dw"
|
| 598 |
+
}
|
| 599 |
+
layer {
|
| 600 |
+
name: "conv9"
|
| 601 |
+
type: "Convolution"
|
| 602 |
+
bottom: "conv9/dw"
|
| 603 |
+
top: "conv9"
|
| 604 |
+
param {
|
| 605 |
+
lr_mult: 1.0
|
| 606 |
+
decay_mult: 1.0
|
| 607 |
+
}
|
| 608 |
+
param {
|
| 609 |
+
lr_mult: 2.0
|
| 610 |
+
decay_mult: 0.0
|
| 611 |
+
}
|
| 612 |
+
convolution_param {
|
| 613 |
+
num_output: 512
|
| 614 |
+
kernel_size: 1
|
| 615 |
+
weight_filler {
|
| 616 |
+
type: "msra"
|
| 617 |
+
}
|
| 618 |
+
bias_filler {
|
| 619 |
+
type: "constant"
|
| 620 |
+
value: 0.0
|
| 621 |
+
}
|
| 622 |
+
}
|
| 623 |
+
}
|
| 624 |
+
layer {
|
| 625 |
+
name: "conv9/relu"
|
| 626 |
+
type: "ReLU"
|
| 627 |
+
bottom: "conv9"
|
| 628 |
+
top: "conv9"
|
| 629 |
+
}
|
| 630 |
+
layer {
|
| 631 |
+
name: "conv10/dw"
|
| 632 |
+
type: "Convolution"
|
| 633 |
+
bottom: "conv9"
|
| 634 |
+
top: "conv10/dw"
|
| 635 |
+
param {
|
| 636 |
+
lr_mult: 1.0
|
| 637 |
+
decay_mult: 1.0
|
| 638 |
+
}
|
| 639 |
+
param {
|
| 640 |
+
lr_mult: 2.0
|
| 641 |
+
decay_mult: 0.0
|
| 642 |
+
}
|
| 643 |
+
convolution_param {
|
| 644 |
+
num_output: 512
|
| 645 |
+
pad: 1
|
| 646 |
+
kernel_size: 3
|
| 647 |
+
group: 512
|
| 648 |
+
engine: CAFFE
|
| 649 |
+
weight_filler {
|
| 650 |
+
type: "msra"
|
| 651 |
+
}
|
| 652 |
+
bias_filler {
|
| 653 |
+
type: "constant"
|
| 654 |
+
value: 0.0
|
| 655 |
+
}
|
| 656 |
+
}
|
| 657 |
+
}
|
| 658 |
+
layer {
|
| 659 |
+
name: "conv10/dw/relu"
|
| 660 |
+
type: "ReLU"
|
| 661 |
+
bottom: "conv10/dw"
|
| 662 |
+
top: "conv10/dw"
|
| 663 |
+
}
|
| 664 |
+
layer {
|
| 665 |
+
name: "conv10"
|
| 666 |
+
type: "Convolution"
|
| 667 |
+
bottom: "conv10/dw"
|
| 668 |
+
top: "conv10"
|
| 669 |
+
param {
|
| 670 |
+
lr_mult: 1.0
|
| 671 |
+
decay_mult: 1.0
|
| 672 |
+
}
|
| 673 |
+
param {
|
| 674 |
+
lr_mult: 2.0
|
| 675 |
+
decay_mult: 0.0
|
| 676 |
+
}
|
| 677 |
+
convolution_param {
|
| 678 |
+
num_output: 512
|
| 679 |
+
kernel_size: 1
|
| 680 |
+
weight_filler {
|
| 681 |
+
type: "msra"
|
| 682 |
+
}
|
| 683 |
+
bias_filler {
|
| 684 |
+
type: "constant"
|
| 685 |
+
value: 0.0
|
| 686 |
+
}
|
| 687 |
+
}
|
| 688 |
+
}
|
| 689 |
+
layer {
|
| 690 |
+
name: "conv10/relu"
|
| 691 |
+
type: "ReLU"
|
| 692 |
+
bottom: "conv10"
|
| 693 |
+
top: "conv10"
|
| 694 |
+
}
|
| 695 |
+
layer {
|
| 696 |
+
name: "conv11/dw"
|
| 697 |
+
type: "Convolution"
|
| 698 |
+
bottom: "conv10"
|
| 699 |
+
top: "conv11/dw"
|
| 700 |
+
param {
|
| 701 |
+
lr_mult: 1.0
|
| 702 |
+
decay_mult: 1.0
|
| 703 |
+
}
|
| 704 |
+
param {
|
| 705 |
+
lr_mult: 2.0
|
| 706 |
+
decay_mult: 0.0
|
| 707 |
+
}
|
| 708 |
+
convolution_param {
|
| 709 |
+
num_output: 512
|
| 710 |
+
pad: 1
|
| 711 |
+
kernel_size: 3
|
| 712 |
+
group: 512
|
| 713 |
+
engine: CAFFE
|
| 714 |
+
weight_filler {
|
| 715 |
+
type: "msra"
|
| 716 |
+
}
|
| 717 |
+
bias_filler {
|
| 718 |
+
type: "constant"
|
| 719 |
+
value: 0.0
|
| 720 |
+
}
|
| 721 |
+
}
|
| 722 |
+
}
|
| 723 |
+
layer {
|
| 724 |
+
name: "conv11/dw/relu"
|
| 725 |
+
type: "ReLU"
|
| 726 |
+
bottom: "conv11/dw"
|
| 727 |
+
top: "conv11/dw"
|
| 728 |
+
}
|
| 729 |
+
layer {
|
| 730 |
+
name: "conv11"
|
| 731 |
+
type: "Convolution"
|
| 732 |
+
bottom: "conv11/dw"
|
| 733 |
+
top: "conv11"
|
| 734 |
+
param {
|
| 735 |
+
lr_mult: 1.0
|
| 736 |
+
decay_mult: 1.0
|
| 737 |
+
}
|
| 738 |
+
param {
|
| 739 |
+
lr_mult: 2.0
|
| 740 |
+
decay_mult: 0.0
|
| 741 |
+
}
|
| 742 |
+
convolution_param {
|
| 743 |
+
num_output: 512
|
| 744 |
+
kernel_size: 1
|
| 745 |
+
weight_filler {
|
| 746 |
+
type: "msra"
|
| 747 |
+
}
|
| 748 |
+
bias_filler {
|
| 749 |
+
type: "constant"
|
| 750 |
+
value: 0.0
|
| 751 |
+
}
|
| 752 |
+
}
|
| 753 |
+
}
|
| 754 |
+
layer {
|
| 755 |
+
name: "conv11/relu"
|
| 756 |
+
type: "ReLU"
|
| 757 |
+
bottom: "conv11"
|
| 758 |
+
top: "conv11"
|
| 759 |
+
}
|
| 760 |
+
layer {
|
| 761 |
+
name: "conv12/dw"
|
| 762 |
+
type: "Convolution"
|
| 763 |
+
bottom: "conv11"
|
| 764 |
+
top: "conv12/dw"
|
| 765 |
+
param {
|
| 766 |
+
lr_mult: 1.0
|
| 767 |
+
decay_mult: 1.0
|
| 768 |
+
}
|
| 769 |
+
param {
|
| 770 |
+
lr_mult: 2.0
|
| 771 |
+
decay_mult: 0.0
|
| 772 |
+
}
|
| 773 |
+
convolution_param {
|
| 774 |
+
num_output: 512
|
| 775 |
+
pad: 1
|
| 776 |
+
kernel_size: 3
|
| 777 |
+
stride: 2
|
| 778 |
+
group: 512
|
| 779 |
+
engine: CAFFE
|
| 780 |
+
weight_filler {
|
| 781 |
+
type: "msra"
|
| 782 |
+
}
|
| 783 |
+
bias_filler {
|
| 784 |
+
type: "constant"
|
| 785 |
+
value: 0.0
|
| 786 |
+
}
|
| 787 |
+
}
|
| 788 |
+
}
|
| 789 |
+
layer {
|
| 790 |
+
name: "conv12/dw/relu"
|
| 791 |
+
type: "ReLU"
|
| 792 |
+
bottom: "conv12/dw"
|
| 793 |
+
top: "conv12/dw"
|
| 794 |
+
}
|
| 795 |
+
layer {
|
| 796 |
+
name: "conv12"
|
| 797 |
+
type: "Convolution"
|
| 798 |
+
bottom: "conv12/dw"
|
| 799 |
+
top: "conv12"
|
| 800 |
+
param {
|
| 801 |
+
lr_mult: 1.0
|
| 802 |
+
decay_mult: 1.0
|
| 803 |
+
}
|
| 804 |
+
param {
|
| 805 |
+
lr_mult: 2.0
|
| 806 |
+
decay_mult: 0.0
|
| 807 |
+
}
|
| 808 |
+
convolution_param {
|
| 809 |
+
num_output: 1024
|
| 810 |
+
kernel_size: 1
|
| 811 |
+
weight_filler {
|
| 812 |
+
type: "msra"
|
| 813 |
+
}
|
| 814 |
+
bias_filler {
|
| 815 |
+
type: "constant"
|
| 816 |
+
value: 0.0
|
| 817 |
+
}
|
| 818 |
+
}
|
| 819 |
+
}
|
| 820 |
+
layer {
|
| 821 |
+
name: "conv12/relu"
|
| 822 |
+
type: "ReLU"
|
| 823 |
+
bottom: "conv12"
|
| 824 |
+
top: "conv12"
|
| 825 |
+
}
|
| 826 |
+
layer {
|
| 827 |
+
name: "conv13/dw"
|
| 828 |
+
type: "Convolution"
|
| 829 |
+
bottom: "conv12"
|
| 830 |
+
top: "conv13/dw"
|
| 831 |
+
param {
|
| 832 |
+
lr_mult: 1.0
|
| 833 |
+
decay_mult: 1.0
|
| 834 |
+
}
|
| 835 |
+
param {
|
| 836 |
+
lr_mult: 2.0
|
| 837 |
+
decay_mult: 0.0
|
| 838 |
+
}
|
| 839 |
+
convolution_param {
|
| 840 |
+
num_output: 1024
|
| 841 |
+
pad: 1
|
| 842 |
+
kernel_size: 3
|
| 843 |
+
group: 1024
|
| 844 |
+
engine: CAFFE
|
| 845 |
+
weight_filler {
|
| 846 |
+
type: "msra"
|
| 847 |
+
}
|
| 848 |
+
bias_filler {
|
| 849 |
+
type: "constant"
|
| 850 |
+
value: 0.0
|
| 851 |
+
}
|
| 852 |
+
}
|
| 853 |
+
}
|
| 854 |
+
layer {
|
| 855 |
+
name: "conv13/dw/relu"
|
| 856 |
+
type: "ReLU"
|
| 857 |
+
bottom: "conv13/dw"
|
| 858 |
+
top: "conv13/dw"
|
| 859 |
+
}
|
| 860 |
+
layer {
|
| 861 |
+
name: "conv13"
|
| 862 |
+
type: "Convolution"
|
| 863 |
+
bottom: "conv13/dw"
|
| 864 |
+
top: "conv13"
|
| 865 |
+
param {
|
| 866 |
+
lr_mult: 1.0
|
| 867 |
+
decay_mult: 1.0
|
| 868 |
+
}
|
| 869 |
+
param {
|
| 870 |
+
lr_mult: 2.0
|
| 871 |
+
decay_mult: 0.0
|
| 872 |
+
}
|
| 873 |
+
convolution_param {
|
| 874 |
+
num_output: 1024
|
| 875 |
+
kernel_size: 1
|
| 876 |
+
weight_filler {
|
| 877 |
+
type: "msra"
|
| 878 |
+
}
|
| 879 |
+
bias_filler {
|
| 880 |
+
type: "constant"
|
| 881 |
+
value: 0.0
|
| 882 |
+
}
|
| 883 |
+
}
|
| 884 |
+
}
|
| 885 |
+
layer {
|
| 886 |
+
name: "conv13/relu"
|
| 887 |
+
type: "ReLU"
|
| 888 |
+
bottom: "conv13"
|
| 889 |
+
top: "conv13"
|
| 890 |
+
}
|
| 891 |
+
layer {
|
| 892 |
+
name: "conv14_1"
|
| 893 |
+
type: "Convolution"
|
| 894 |
+
bottom: "conv13"
|
| 895 |
+
top: "conv14_1"
|
| 896 |
+
param {
|
| 897 |
+
lr_mult: 1.0
|
| 898 |
+
decay_mult: 1.0
|
| 899 |
+
}
|
| 900 |
+
param {
|
| 901 |
+
lr_mult: 2.0
|
| 902 |
+
decay_mult: 0.0
|
| 903 |
+
}
|
| 904 |
+
convolution_param {
|
| 905 |
+
num_output: 256
|
| 906 |
+
kernel_size: 1
|
| 907 |
+
weight_filler {
|
| 908 |
+
type: "msra"
|
| 909 |
+
}
|
| 910 |
+
bias_filler {
|
| 911 |
+
type: "constant"
|
| 912 |
+
value: 0.0
|
| 913 |
+
}
|
| 914 |
+
}
|
| 915 |
+
}
|
| 916 |
+
layer {
|
| 917 |
+
name: "conv14_1/relu"
|
| 918 |
+
type: "ReLU"
|
| 919 |
+
bottom: "conv14_1"
|
| 920 |
+
top: "conv14_1"
|
| 921 |
+
}
|
| 922 |
+
layer {
|
| 923 |
+
name: "conv14_2"
|
| 924 |
+
type: "Convolution"
|
| 925 |
+
bottom: "conv14_1"
|
| 926 |
+
top: "conv14_2"
|
| 927 |
+
param {
|
| 928 |
+
lr_mult: 1.0
|
| 929 |
+
decay_mult: 1.0
|
| 930 |
+
}
|
| 931 |
+
param {
|
| 932 |
+
lr_mult: 2.0
|
| 933 |
+
decay_mult: 0.0
|
| 934 |
+
}
|
| 935 |
+
convolution_param {
|
| 936 |
+
num_output: 512
|
| 937 |
+
pad: 1
|
| 938 |
+
kernel_size: 3
|
| 939 |
+
stride: 2
|
| 940 |
+
weight_filler {
|
| 941 |
+
type: "msra"
|
| 942 |
+
}
|
| 943 |
+
bias_filler {
|
| 944 |
+
type: "constant"
|
| 945 |
+
value: 0.0
|
| 946 |
+
}
|
| 947 |
+
}
|
| 948 |
+
}
|
| 949 |
+
layer {
|
| 950 |
+
name: "conv14_2/relu"
|
| 951 |
+
type: "ReLU"
|
| 952 |
+
bottom: "conv14_2"
|
| 953 |
+
top: "conv14_2"
|
| 954 |
+
}
|
| 955 |
+
layer {
|
| 956 |
+
name: "conv15_1"
|
| 957 |
+
type: "Convolution"
|
| 958 |
+
bottom: "conv14_2"
|
| 959 |
+
top: "conv15_1"
|
| 960 |
+
param {
|
| 961 |
+
lr_mult: 1.0
|
| 962 |
+
decay_mult: 1.0
|
| 963 |
+
}
|
| 964 |
+
param {
|
| 965 |
+
lr_mult: 2.0
|
| 966 |
+
decay_mult: 0.0
|
| 967 |
+
}
|
| 968 |
+
convolution_param {
|
| 969 |
+
num_output: 128
|
| 970 |
+
kernel_size: 1
|
| 971 |
+
weight_filler {
|
| 972 |
+
type: "msra"
|
| 973 |
+
}
|
| 974 |
+
bias_filler {
|
| 975 |
+
type: "constant"
|
| 976 |
+
value: 0.0
|
| 977 |
+
}
|
| 978 |
+
}
|
| 979 |
+
}
|
| 980 |
+
layer {
|
| 981 |
+
name: "conv15_1/relu"
|
| 982 |
+
type: "ReLU"
|
| 983 |
+
bottom: "conv15_1"
|
| 984 |
+
top: "conv15_1"
|
| 985 |
+
}
|
| 986 |
+
layer {
|
| 987 |
+
name: "conv15_2"
|
| 988 |
+
type: "Convolution"
|
| 989 |
+
bottom: "conv15_1"
|
| 990 |
+
top: "conv15_2"
|
| 991 |
+
param {
|
| 992 |
+
lr_mult: 1.0
|
| 993 |
+
decay_mult: 1.0
|
| 994 |
+
}
|
| 995 |
+
param {
|
| 996 |
+
lr_mult: 2.0
|
| 997 |
+
decay_mult: 0.0
|
| 998 |
+
}
|
| 999 |
+
convolution_param {
|
| 1000 |
+
num_output: 256
|
| 1001 |
+
pad: 1
|
| 1002 |
+
kernel_size: 3
|
| 1003 |
+
stride: 2
|
| 1004 |
+
weight_filler {
|
| 1005 |
+
type: "msra"
|
| 1006 |
+
}
|
| 1007 |
+
bias_filler {
|
| 1008 |
+
type: "constant"
|
| 1009 |
+
value: 0.0
|
| 1010 |
+
}
|
| 1011 |
+
}
|
| 1012 |
+
}
|
| 1013 |
+
layer {
|
| 1014 |
+
name: "conv15_2/relu"
|
| 1015 |
+
type: "ReLU"
|
| 1016 |
+
bottom: "conv15_2"
|
| 1017 |
+
top: "conv15_2"
|
| 1018 |
+
}
|
| 1019 |
+
layer {
|
| 1020 |
+
name: "conv16_1"
|
| 1021 |
+
type: "Convolution"
|
| 1022 |
+
bottom: "conv15_2"
|
| 1023 |
+
top: "conv16_1"
|
| 1024 |
+
param {
|
| 1025 |
+
lr_mult: 1.0
|
| 1026 |
+
decay_mult: 1.0
|
| 1027 |
+
}
|
| 1028 |
+
param {
|
| 1029 |
+
lr_mult: 2.0
|
| 1030 |
+
decay_mult: 0.0
|
| 1031 |
+
}
|
| 1032 |
+
convolution_param {
|
| 1033 |
+
num_output: 128
|
| 1034 |
+
kernel_size: 1
|
| 1035 |
+
weight_filler {
|
| 1036 |
+
type: "msra"
|
| 1037 |
+
}
|
| 1038 |
+
bias_filler {
|
| 1039 |
+
type: "constant"
|
| 1040 |
+
value: 0.0
|
| 1041 |
+
}
|
| 1042 |
+
}
|
| 1043 |
+
}
|
| 1044 |
+
layer {
|
| 1045 |
+
name: "conv16_1/relu"
|
| 1046 |
+
type: "ReLU"
|
| 1047 |
+
bottom: "conv16_1"
|
| 1048 |
+
top: "conv16_1"
|
| 1049 |
+
}
|
| 1050 |
+
layer {
|
| 1051 |
+
name: "conv16_2"
|
| 1052 |
+
type: "Convolution"
|
| 1053 |
+
bottom: "conv16_1"
|
| 1054 |
+
top: "conv16_2"
|
| 1055 |
+
param {
|
| 1056 |
+
lr_mult: 1.0
|
| 1057 |
+
decay_mult: 1.0
|
| 1058 |
+
}
|
| 1059 |
+
param {
|
| 1060 |
+
lr_mult: 2.0
|
| 1061 |
+
decay_mult: 0.0
|
| 1062 |
+
}
|
| 1063 |
+
convolution_param {
|
| 1064 |
+
num_output: 256
|
| 1065 |
+
pad: 1
|
| 1066 |
+
kernel_size: 3
|
| 1067 |
+
stride: 2
|
| 1068 |
+
weight_filler {
|
| 1069 |
+
type: "msra"
|
| 1070 |
+
}
|
| 1071 |
+
bias_filler {
|
| 1072 |
+
type: "constant"
|
| 1073 |
+
value: 0.0
|
| 1074 |
+
}
|
| 1075 |
+
}
|
| 1076 |
+
}
|
| 1077 |
+
layer {
|
| 1078 |
+
name: "conv16_2/relu"
|
| 1079 |
+
type: "ReLU"
|
| 1080 |
+
bottom: "conv16_2"
|
| 1081 |
+
top: "conv16_2"
|
| 1082 |
+
}
|
| 1083 |
+
layer {
|
| 1084 |
+
name: "conv17_1"
|
| 1085 |
+
type: "Convolution"
|
| 1086 |
+
bottom: "conv16_2"
|
| 1087 |
+
top: "conv17_1"
|
| 1088 |
+
param {
|
| 1089 |
+
lr_mult: 1.0
|
| 1090 |
+
decay_mult: 1.0
|
| 1091 |
+
}
|
| 1092 |
+
param {
|
| 1093 |
+
lr_mult: 2.0
|
| 1094 |
+
decay_mult: 0.0
|
| 1095 |
+
}
|
| 1096 |
+
convolution_param {
|
| 1097 |
+
num_output: 64
|
| 1098 |
+
kernel_size: 1
|
| 1099 |
+
weight_filler {
|
| 1100 |
+
type: "msra"
|
| 1101 |
+
}
|
| 1102 |
+
bias_filler {
|
| 1103 |
+
type: "constant"
|
| 1104 |
+
value: 0.0
|
| 1105 |
+
}
|
| 1106 |
+
}
|
| 1107 |
+
}
|
| 1108 |
+
layer {
|
| 1109 |
+
name: "conv17_1/relu"
|
| 1110 |
+
type: "ReLU"
|
| 1111 |
+
bottom: "conv17_1"
|
| 1112 |
+
top: "conv17_1"
|
| 1113 |
+
}
|
| 1114 |
+
layer {
|
| 1115 |
+
name: "conv17_2"
|
| 1116 |
+
type: "Convolution"
|
| 1117 |
+
bottom: "conv17_1"
|
| 1118 |
+
top: "conv17_2"
|
| 1119 |
+
param {
|
| 1120 |
+
lr_mult: 1.0
|
| 1121 |
+
decay_mult: 1.0
|
| 1122 |
+
}
|
| 1123 |
+
param {
|
| 1124 |
+
lr_mult: 2.0
|
| 1125 |
+
decay_mult: 0.0
|
| 1126 |
+
}
|
| 1127 |
+
convolution_param {
|
| 1128 |
+
num_output: 128
|
| 1129 |
+
pad: 1
|
| 1130 |
+
kernel_size: 3
|
| 1131 |
+
stride: 2
|
| 1132 |
+
weight_filler {
|
| 1133 |
+
type: "msra"
|
| 1134 |
+
}
|
| 1135 |
+
bias_filler {
|
| 1136 |
+
type: "constant"
|
| 1137 |
+
value: 0.0
|
| 1138 |
+
}
|
| 1139 |
+
}
|
| 1140 |
+
}
|
| 1141 |
+
layer {
|
| 1142 |
+
name: "conv17_2/relu"
|
| 1143 |
+
type: "ReLU"
|
| 1144 |
+
bottom: "conv17_2"
|
| 1145 |
+
top: "conv17_2"
|
| 1146 |
+
}
|
| 1147 |
+
layer {
|
| 1148 |
+
name: "conv11_mbox_loc"
|
| 1149 |
+
type: "Convolution"
|
| 1150 |
+
bottom: "conv11"
|
| 1151 |
+
top: "conv11_mbox_loc"
|
| 1152 |
+
param {
|
| 1153 |
+
lr_mult: 1.0
|
| 1154 |
+
decay_mult: 1.0
|
| 1155 |
+
}
|
| 1156 |
+
param {
|
| 1157 |
+
lr_mult: 2.0
|
| 1158 |
+
decay_mult: 0.0
|
| 1159 |
+
}
|
| 1160 |
+
convolution_param {
|
| 1161 |
+
num_output: 12
|
| 1162 |
+
kernel_size: 1
|
| 1163 |
+
weight_filler {
|
| 1164 |
+
type: "msra"
|
| 1165 |
+
}
|
| 1166 |
+
bias_filler {
|
| 1167 |
+
type: "constant"
|
| 1168 |
+
value: 0.0
|
| 1169 |
+
}
|
| 1170 |
+
}
|
| 1171 |
+
}
|
| 1172 |
+
layer {
|
| 1173 |
+
name: "conv11_mbox_loc_perm"
|
| 1174 |
+
type: "Permute"
|
| 1175 |
+
bottom: "conv11_mbox_loc"
|
| 1176 |
+
top: "conv11_mbox_loc_perm"
|
| 1177 |
+
permute_param {
|
| 1178 |
+
order: 0
|
| 1179 |
+
order: 2
|
| 1180 |
+
order: 3
|
| 1181 |
+
order: 1
|
| 1182 |
+
}
|
| 1183 |
+
}
|
| 1184 |
+
layer {
|
| 1185 |
+
name: "conv11_mbox_loc_flat"
|
| 1186 |
+
type: "Flatten"
|
| 1187 |
+
bottom: "conv11_mbox_loc_perm"
|
| 1188 |
+
top: "conv11_mbox_loc_flat"
|
| 1189 |
+
flatten_param {
|
| 1190 |
+
axis: 1
|
| 1191 |
+
}
|
| 1192 |
+
}
|
| 1193 |
+
layer {
|
| 1194 |
+
name: "conv11_mbox_conf"
|
| 1195 |
+
type: "Convolution"
|
| 1196 |
+
bottom: "conv11"
|
| 1197 |
+
top: "conv11_mbox_conf"
|
| 1198 |
+
param {
|
| 1199 |
+
lr_mult: 1.0
|
| 1200 |
+
decay_mult: 1.0
|
| 1201 |
+
}
|
| 1202 |
+
param {
|
| 1203 |
+
lr_mult: 2.0
|
| 1204 |
+
decay_mult: 0.0
|
| 1205 |
+
}
|
| 1206 |
+
convolution_param {
|
| 1207 |
+
num_output: 63
|
| 1208 |
+
kernel_size: 1
|
| 1209 |
+
weight_filler {
|
| 1210 |
+
type: "msra"
|
| 1211 |
+
}
|
| 1212 |
+
bias_filler {
|
| 1213 |
+
type: "constant"
|
| 1214 |
+
value: 0.0
|
| 1215 |
+
}
|
| 1216 |
+
}
|
| 1217 |
+
}
|
| 1218 |
+
layer {
|
| 1219 |
+
name: "conv11_mbox_conf_perm"
|
| 1220 |
+
type: "Permute"
|
| 1221 |
+
bottom: "conv11_mbox_conf"
|
| 1222 |
+
top: "conv11_mbox_conf_perm"
|
| 1223 |
+
permute_param {
|
| 1224 |
+
order: 0
|
| 1225 |
+
order: 2
|
| 1226 |
+
order: 3
|
| 1227 |
+
order: 1
|
| 1228 |
+
}
|
| 1229 |
+
}
|
| 1230 |
+
layer {
|
| 1231 |
+
name: "conv11_mbox_conf_flat"
|
| 1232 |
+
type: "Flatten"
|
| 1233 |
+
bottom: "conv11_mbox_conf_perm"
|
| 1234 |
+
top: "conv11_mbox_conf_flat"
|
| 1235 |
+
flatten_param {
|
| 1236 |
+
axis: 1
|
| 1237 |
+
}
|
| 1238 |
+
}
|
| 1239 |
+
layer {
|
| 1240 |
+
name: "conv11_mbox_priorbox"
|
| 1241 |
+
type: "PriorBox"
|
| 1242 |
+
bottom: "conv11"
|
| 1243 |
+
bottom: "data"
|
| 1244 |
+
top: "conv11_mbox_priorbox"
|
| 1245 |
+
prior_box_param {
|
| 1246 |
+
min_size: 60.0
|
| 1247 |
+
aspect_ratio: 2.0
|
| 1248 |
+
flip: true
|
| 1249 |
+
clip: false
|
| 1250 |
+
variance: 0.1
|
| 1251 |
+
variance: 0.1
|
| 1252 |
+
variance: 0.2
|
| 1253 |
+
variance: 0.2
|
| 1254 |
+
offset: 0.5
|
| 1255 |
+
}
|
| 1256 |
+
}
|
| 1257 |
+
layer {
|
| 1258 |
+
name: "conv13_mbox_loc"
|
| 1259 |
+
type: "Convolution"
|
| 1260 |
+
bottom: "conv13"
|
| 1261 |
+
top: "conv13_mbox_loc"
|
| 1262 |
+
param {
|
| 1263 |
+
lr_mult: 1.0
|
| 1264 |
+
decay_mult: 1.0
|
| 1265 |
+
}
|
| 1266 |
+
param {
|
| 1267 |
+
lr_mult: 2.0
|
| 1268 |
+
decay_mult: 0.0
|
| 1269 |
+
}
|
| 1270 |
+
convolution_param {
|
| 1271 |
+
num_output: 24
|
| 1272 |
+
kernel_size: 1
|
| 1273 |
+
weight_filler {
|
| 1274 |
+
type: "msra"
|
| 1275 |
+
}
|
| 1276 |
+
bias_filler {
|
| 1277 |
+
type: "constant"
|
| 1278 |
+
value: 0.0
|
| 1279 |
+
}
|
| 1280 |
+
}
|
| 1281 |
+
}
|
| 1282 |
+
layer {
|
| 1283 |
+
name: "conv13_mbox_loc_perm"
|
| 1284 |
+
type: "Permute"
|
| 1285 |
+
bottom: "conv13_mbox_loc"
|
| 1286 |
+
top: "conv13_mbox_loc_perm"
|
| 1287 |
+
permute_param {
|
| 1288 |
+
order: 0
|
| 1289 |
+
order: 2
|
| 1290 |
+
order: 3
|
| 1291 |
+
order: 1
|
| 1292 |
+
}
|
| 1293 |
+
}
|
| 1294 |
+
layer {
|
| 1295 |
+
name: "conv13_mbox_loc_flat"
|
| 1296 |
+
type: "Flatten"
|
| 1297 |
+
bottom: "conv13_mbox_loc_perm"
|
| 1298 |
+
top: "conv13_mbox_loc_flat"
|
| 1299 |
+
flatten_param {
|
| 1300 |
+
axis: 1
|
| 1301 |
+
}
|
| 1302 |
+
}
|
| 1303 |
+
layer {
|
| 1304 |
+
name: "conv13_mbox_conf"
|
| 1305 |
+
type: "Convolution"
|
| 1306 |
+
bottom: "conv13"
|
| 1307 |
+
top: "conv13_mbox_conf"
|
| 1308 |
+
param {
|
| 1309 |
+
lr_mult: 1.0
|
| 1310 |
+
decay_mult: 1.0
|
| 1311 |
+
}
|
| 1312 |
+
param {
|
| 1313 |
+
lr_mult: 2.0
|
| 1314 |
+
decay_mult: 0.0
|
| 1315 |
+
}
|
| 1316 |
+
convolution_param {
|
| 1317 |
+
num_output: 126
|
| 1318 |
+
kernel_size: 1
|
| 1319 |
+
weight_filler {
|
| 1320 |
+
type: "msra"
|
| 1321 |
+
}
|
| 1322 |
+
bias_filler {
|
| 1323 |
+
type: "constant"
|
| 1324 |
+
value: 0.0
|
| 1325 |
+
}
|
| 1326 |
+
}
|
| 1327 |
+
}
|
| 1328 |
+
layer {
|
| 1329 |
+
name: "conv13_mbox_conf_perm"
|
| 1330 |
+
type: "Permute"
|
| 1331 |
+
bottom: "conv13_mbox_conf"
|
| 1332 |
+
top: "conv13_mbox_conf_perm"
|
| 1333 |
+
permute_param {
|
| 1334 |
+
order: 0
|
| 1335 |
+
order: 2
|
| 1336 |
+
order: 3
|
| 1337 |
+
order: 1
|
| 1338 |
+
}
|
| 1339 |
+
}
|
| 1340 |
+
layer {
|
| 1341 |
+
name: "conv13_mbox_conf_flat"
|
| 1342 |
+
type: "Flatten"
|
| 1343 |
+
bottom: "conv13_mbox_conf_perm"
|
| 1344 |
+
top: "conv13_mbox_conf_flat"
|
| 1345 |
+
flatten_param {
|
| 1346 |
+
axis: 1
|
| 1347 |
+
}
|
| 1348 |
+
}
|
| 1349 |
+
layer {
|
| 1350 |
+
name: "conv13_mbox_priorbox"
|
| 1351 |
+
type: "PriorBox"
|
| 1352 |
+
bottom: "conv13"
|
| 1353 |
+
bottom: "data"
|
| 1354 |
+
top: "conv13_mbox_priorbox"
|
| 1355 |
+
prior_box_param {
|
| 1356 |
+
min_size: 105.0
|
| 1357 |
+
max_size: 150.0
|
| 1358 |
+
aspect_ratio: 2.0
|
| 1359 |
+
aspect_ratio: 3.0
|
| 1360 |
+
flip: true
|
| 1361 |
+
clip: false
|
| 1362 |
+
variance: 0.1
|
| 1363 |
+
variance: 0.1
|
| 1364 |
+
variance: 0.2
|
| 1365 |
+
variance: 0.2
|
| 1366 |
+
offset: 0.5
|
| 1367 |
+
}
|
| 1368 |
+
}
|
| 1369 |
+
layer {
|
| 1370 |
+
name: "conv14_2_mbox_loc"
|
| 1371 |
+
type: "Convolution"
|
| 1372 |
+
bottom: "conv14_2"
|
| 1373 |
+
top: "conv14_2_mbox_loc"
|
| 1374 |
+
param {
|
| 1375 |
+
lr_mult: 1.0
|
| 1376 |
+
decay_mult: 1.0
|
| 1377 |
+
}
|
| 1378 |
+
param {
|
| 1379 |
+
lr_mult: 2.0
|
| 1380 |
+
decay_mult: 0.0
|
| 1381 |
+
}
|
| 1382 |
+
convolution_param {
|
| 1383 |
+
num_output: 24
|
| 1384 |
+
kernel_size: 1
|
| 1385 |
+
weight_filler {
|
| 1386 |
+
type: "msra"
|
| 1387 |
+
}
|
| 1388 |
+
bias_filler {
|
| 1389 |
+
type: "constant"
|
| 1390 |
+
value: 0.0
|
| 1391 |
+
}
|
| 1392 |
+
}
|
| 1393 |
+
}
|
| 1394 |
+
layer {
|
| 1395 |
+
name: "conv14_2_mbox_loc_perm"
|
| 1396 |
+
type: "Permute"
|
| 1397 |
+
bottom: "conv14_2_mbox_loc"
|
| 1398 |
+
top: "conv14_2_mbox_loc_perm"
|
| 1399 |
+
permute_param {
|
| 1400 |
+
order: 0
|
| 1401 |
+
order: 2
|
| 1402 |
+
order: 3
|
| 1403 |
+
order: 1
|
| 1404 |
+
}
|
| 1405 |
+
}
|
| 1406 |
+
layer {
|
| 1407 |
+
name: "conv14_2_mbox_loc_flat"
|
| 1408 |
+
type: "Flatten"
|
| 1409 |
+
bottom: "conv14_2_mbox_loc_perm"
|
| 1410 |
+
top: "conv14_2_mbox_loc_flat"
|
| 1411 |
+
flatten_param {
|
| 1412 |
+
axis: 1
|
| 1413 |
+
}
|
| 1414 |
+
}
|
| 1415 |
+
layer {
|
| 1416 |
+
name: "conv14_2_mbox_conf"
|
| 1417 |
+
type: "Convolution"
|
| 1418 |
+
bottom: "conv14_2"
|
| 1419 |
+
top: "conv14_2_mbox_conf"
|
| 1420 |
+
param {
|
| 1421 |
+
lr_mult: 1.0
|
| 1422 |
+
decay_mult: 1.0
|
| 1423 |
+
}
|
| 1424 |
+
param {
|
| 1425 |
+
lr_mult: 2.0
|
| 1426 |
+
decay_mult: 0.0
|
| 1427 |
+
}
|
| 1428 |
+
convolution_param {
|
| 1429 |
+
num_output: 126
|
| 1430 |
+
kernel_size: 1
|
| 1431 |
+
weight_filler {
|
| 1432 |
+
type: "msra"
|
| 1433 |
+
}
|
| 1434 |
+
bias_filler {
|
| 1435 |
+
type: "constant"
|
| 1436 |
+
value: 0.0
|
| 1437 |
+
}
|
| 1438 |
+
}
|
| 1439 |
+
}
|
| 1440 |
+
layer {
|
| 1441 |
+
name: "conv14_2_mbox_conf_perm"
|
| 1442 |
+
type: "Permute"
|
| 1443 |
+
bottom: "conv14_2_mbox_conf"
|
| 1444 |
+
top: "conv14_2_mbox_conf_perm"
|
| 1445 |
+
permute_param {
|
| 1446 |
+
order: 0
|
| 1447 |
+
order: 2
|
| 1448 |
+
order: 3
|
| 1449 |
+
order: 1
|
| 1450 |
+
}
|
| 1451 |
+
}
|
| 1452 |
+
layer {
|
| 1453 |
+
name: "conv14_2_mbox_conf_flat"
|
| 1454 |
+
type: "Flatten"
|
| 1455 |
+
bottom: "conv14_2_mbox_conf_perm"
|
| 1456 |
+
top: "conv14_2_mbox_conf_flat"
|
| 1457 |
+
flatten_param {
|
| 1458 |
+
axis: 1
|
| 1459 |
+
}
|
| 1460 |
+
}
|
| 1461 |
+
layer {
|
| 1462 |
+
name: "conv14_2_mbox_priorbox"
|
| 1463 |
+
type: "PriorBox"
|
| 1464 |
+
bottom: "conv14_2"
|
| 1465 |
+
bottom: "data"
|
| 1466 |
+
top: "conv14_2_mbox_priorbox"
|
| 1467 |
+
prior_box_param {
|
| 1468 |
+
min_size: 150.0
|
| 1469 |
+
max_size: 195.0
|
| 1470 |
+
aspect_ratio: 2.0
|
| 1471 |
+
aspect_ratio: 3.0
|
| 1472 |
+
flip: true
|
| 1473 |
+
clip: false
|
| 1474 |
+
variance: 0.1
|
| 1475 |
+
variance: 0.1
|
| 1476 |
+
variance: 0.2
|
| 1477 |
+
variance: 0.2
|
| 1478 |
+
offset: 0.5
|
| 1479 |
+
}
|
| 1480 |
+
}
|
| 1481 |
+
layer {
|
| 1482 |
+
name: "conv15_2_mbox_loc"
|
| 1483 |
+
type: "Convolution"
|
| 1484 |
+
bottom: "conv15_2"
|
| 1485 |
+
top: "conv15_2_mbox_loc"
|
| 1486 |
+
param {
|
| 1487 |
+
lr_mult: 1.0
|
| 1488 |
+
decay_mult: 1.0
|
| 1489 |
+
}
|
| 1490 |
+
param {
|
| 1491 |
+
lr_mult: 2.0
|
| 1492 |
+
decay_mult: 0.0
|
| 1493 |
+
}
|
| 1494 |
+
convolution_param {
|
| 1495 |
+
num_output: 24
|
| 1496 |
+
kernel_size: 1
|
| 1497 |
+
weight_filler {
|
| 1498 |
+
type: "msra"
|
| 1499 |
+
}
|
| 1500 |
+
bias_filler {
|
| 1501 |
+
type: "constant"
|
| 1502 |
+
value: 0.0
|
| 1503 |
+
}
|
| 1504 |
+
}
|
| 1505 |
+
}
|
| 1506 |
+
layer {
|
| 1507 |
+
name: "conv15_2_mbox_loc_perm"
|
| 1508 |
+
type: "Permute"
|
| 1509 |
+
bottom: "conv15_2_mbox_loc"
|
| 1510 |
+
top: "conv15_2_mbox_loc_perm"
|
| 1511 |
+
permute_param {
|
| 1512 |
+
order: 0
|
| 1513 |
+
order: 2
|
| 1514 |
+
order: 3
|
| 1515 |
+
order: 1
|
| 1516 |
+
}
|
| 1517 |
+
}
|
| 1518 |
+
layer {
|
| 1519 |
+
name: "conv15_2_mbox_loc_flat"
|
| 1520 |
+
type: "Flatten"
|
| 1521 |
+
bottom: "conv15_2_mbox_loc_perm"
|
| 1522 |
+
top: "conv15_2_mbox_loc_flat"
|
| 1523 |
+
flatten_param {
|
| 1524 |
+
axis: 1
|
| 1525 |
+
}
|
| 1526 |
+
}
|
| 1527 |
+
layer {
|
| 1528 |
+
name: "conv15_2_mbox_conf"
|
| 1529 |
+
type: "Convolution"
|
| 1530 |
+
bottom: "conv15_2"
|
| 1531 |
+
top: "conv15_2_mbox_conf"
|
| 1532 |
+
param {
|
| 1533 |
+
lr_mult: 1.0
|
| 1534 |
+
decay_mult: 1.0
|
| 1535 |
+
}
|
| 1536 |
+
param {
|
| 1537 |
+
lr_mult: 2.0
|
| 1538 |
+
decay_mult: 0.0
|
| 1539 |
+
}
|
| 1540 |
+
convolution_param {
|
| 1541 |
+
num_output: 126
|
| 1542 |
+
kernel_size: 1
|
| 1543 |
+
weight_filler {
|
| 1544 |
+
type: "msra"
|
| 1545 |
+
}
|
| 1546 |
+
bias_filler {
|
| 1547 |
+
type: "constant"
|
| 1548 |
+
value: 0.0
|
| 1549 |
+
}
|
| 1550 |
+
}
|
| 1551 |
+
}
|
| 1552 |
+
layer {
|
| 1553 |
+
name: "conv15_2_mbox_conf_perm"
|
| 1554 |
+
type: "Permute"
|
| 1555 |
+
bottom: "conv15_2_mbox_conf"
|
| 1556 |
+
top: "conv15_2_mbox_conf_perm"
|
| 1557 |
+
permute_param {
|
| 1558 |
+
order: 0
|
| 1559 |
+
order: 2
|
| 1560 |
+
order: 3
|
| 1561 |
+
order: 1
|
| 1562 |
+
}
|
| 1563 |
+
}
|
| 1564 |
+
layer {
|
| 1565 |
+
name: "conv15_2_mbox_conf_flat"
|
| 1566 |
+
type: "Flatten"
|
| 1567 |
+
bottom: "conv15_2_mbox_conf_perm"
|
| 1568 |
+
top: "conv15_2_mbox_conf_flat"
|
| 1569 |
+
flatten_param {
|
| 1570 |
+
axis: 1
|
| 1571 |
+
}
|
| 1572 |
+
}
|
| 1573 |
+
layer {
|
| 1574 |
+
name: "conv15_2_mbox_priorbox"
|
| 1575 |
+
type: "PriorBox"
|
| 1576 |
+
bottom: "conv15_2"
|
| 1577 |
+
bottom: "data"
|
| 1578 |
+
top: "conv15_2_mbox_priorbox"
|
| 1579 |
+
prior_box_param {
|
| 1580 |
+
min_size: 195.0
|
| 1581 |
+
max_size: 240.0
|
| 1582 |
+
aspect_ratio: 2.0
|
| 1583 |
+
aspect_ratio: 3.0
|
| 1584 |
+
flip: true
|
| 1585 |
+
clip: false
|
| 1586 |
+
variance: 0.1
|
| 1587 |
+
variance: 0.1
|
| 1588 |
+
variance: 0.2
|
| 1589 |
+
variance: 0.2
|
| 1590 |
+
offset: 0.5
|
| 1591 |
+
}
|
| 1592 |
+
}
|
| 1593 |
+
layer {
|
| 1594 |
+
name: "conv16_2_mbox_loc"
|
| 1595 |
+
type: "Convolution"
|
| 1596 |
+
bottom: "conv16_2"
|
| 1597 |
+
top: "conv16_2_mbox_loc"
|
| 1598 |
+
param {
|
| 1599 |
+
lr_mult: 1.0
|
| 1600 |
+
decay_mult: 1.0
|
| 1601 |
+
}
|
| 1602 |
+
param {
|
| 1603 |
+
lr_mult: 2.0
|
| 1604 |
+
decay_mult: 0.0
|
| 1605 |
+
}
|
| 1606 |
+
convolution_param {
|
| 1607 |
+
num_output: 24
|
| 1608 |
+
kernel_size: 1
|
| 1609 |
+
weight_filler {
|
| 1610 |
+
type: "msra"
|
| 1611 |
+
}
|
| 1612 |
+
bias_filler {
|
| 1613 |
+
type: "constant"
|
| 1614 |
+
value: 0.0
|
| 1615 |
+
}
|
| 1616 |
+
}
|
| 1617 |
+
}
|
| 1618 |
+
layer {
|
| 1619 |
+
name: "conv16_2_mbox_loc_perm"
|
| 1620 |
+
type: "Permute"
|
| 1621 |
+
bottom: "conv16_2_mbox_loc"
|
| 1622 |
+
top: "conv16_2_mbox_loc_perm"
|
| 1623 |
+
permute_param {
|
| 1624 |
+
order: 0
|
| 1625 |
+
order: 2
|
| 1626 |
+
order: 3
|
| 1627 |
+
order: 1
|
| 1628 |
+
}
|
| 1629 |
+
}
|
| 1630 |
+
layer {
|
| 1631 |
+
name: "conv16_2_mbox_loc_flat"
|
| 1632 |
+
type: "Flatten"
|
| 1633 |
+
bottom: "conv16_2_mbox_loc_perm"
|
| 1634 |
+
top: "conv16_2_mbox_loc_flat"
|
| 1635 |
+
flatten_param {
|
| 1636 |
+
axis: 1
|
| 1637 |
+
}
|
| 1638 |
+
}
|
| 1639 |
+
layer {
|
| 1640 |
+
name: "conv16_2_mbox_conf"
|
| 1641 |
+
type: "Convolution"
|
| 1642 |
+
bottom: "conv16_2"
|
| 1643 |
+
top: "conv16_2_mbox_conf"
|
| 1644 |
+
param {
|
| 1645 |
+
lr_mult: 1.0
|
| 1646 |
+
decay_mult: 1.0
|
| 1647 |
+
}
|
| 1648 |
+
param {
|
| 1649 |
+
lr_mult: 2.0
|
| 1650 |
+
decay_mult: 0.0
|
| 1651 |
+
}
|
| 1652 |
+
convolution_param {
|
| 1653 |
+
num_output: 126
|
| 1654 |
+
kernel_size: 1
|
| 1655 |
+
weight_filler {
|
| 1656 |
+
type: "msra"
|
| 1657 |
+
}
|
| 1658 |
+
bias_filler {
|
| 1659 |
+
type: "constant"
|
| 1660 |
+
value: 0.0
|
| 1661 |
+
}
|
| 1662 |
+
}
|
| 1663 |
+
}
|
| 1664 |
+
layer {
|
| 1665 |
+
name: "conv16_2_mbox_conf_perm"
|
| 1666 |
+
type: "Permute"
|
| 1667 |
+
bottom: "conv16_2_mbox_conf"
|
| 1668 |
+
top: "conv16_2_mbox_conf_perm"
|
| 1669 |
+
permute_param {
|
| 1670 |
+
order: 0
|
| 1671 |
+
order: 2
|
| 1672 |
+
order: 3
|
| 1673 |
+
order: 1
|
| 1674 |
+
}
|
| 1675 |
+
}
|
| 1676 |
+
layer {
|
| 1677 |
+
name: "conv16_2_mbox_conf_flat"
|
| 1678 |
+
type: "Flatten"
|
| 1679 |
+
bottom: "conv16_2_mbox_conf_perm"
|
| 1680 |
+
top: "conv16_2_mbox_conf_flat"
|
| 1681 |
+
flatten_param {
|
| 1682 |
+
axis: 1
|
| 1683 |
+
}
|
| 1684 |
+
}
|
| 1685 |
+
layer {
|
| 1686 |
+
name: "conv16_2_mbox_priorbox"
|
| 1687 |
+
type: "PriorBox"
|
| 1688 |
+
bottom: "conv16_2"
|
| 1689 |
+
bottom: "data"
|
| 1690 |
+
top: "conv16_2_mbox_priorbox"
|
| 1691 |
+
prior_box_param {
|
| 1692 |
+
min_size: 240.0
|
| 1693 |
+
max_size: 285.0
|
| 1694 |
+
aspect_ratio: 2.0
|
| 1695 |
+
aspect_ratio: 3.0
|
| 1696 |
+
flip: true
|
| 1697 |
+
clip: false
|
| 1698 |
+
variance: 0.1
|
| 1699 |
+
variance: 0.1
|
| 1700 |
+
variance: 0.2
|
| 1701 |
+
variance: 0.2
|
| 1702 |
+
offset: 0.5
|
| 1703 |
+
}
|
| 1704 |
+
}
|
| 1705 |
+
layer {
|
| 1706 |
+
name: "conv17_2_mbox_loc"
|
| 1707 |
+
type: "Convolution"
|
| 1708 |
+
bottom: "conv17_2"
|
| 1709 |
+
top: "conv17_2_mbox_loc"
|
| 1710 |
+
param {
|
| 1711 |
+
lr_mult: 1.0
|
| 1712 |
+
decay_mult: 1.0
|
| 1713 |
+
}
|
| 1714 |
+
param {
|
| 1715 |
+
lr_mult: 2.0
|
| 1716 |
+
decay_mult: 0.0
|
| 1717 |
+
}
|
| 1718 |
+
convolution_param {
|
| 1719 |
+
num_output: 24
|
| 1720 |
+
kernel_size: 1
|
| 1721 |
+
weight_filler {
|
| 1722 |
+
type: "msra"
|
| 1723 |
+
}
|
| 1724 |
+
bias_filler {
|
| 1725 |
+
type: "constant"
|
| 1726 |
+
value: 0.0
|
| 1727 |
+
}
|
| 1728 |
+
}
|
| 1729 |
+
}
|
| 1730 |
+
layer {
|
| 1731 |
+
name: "conv17_2_mbox_loc_perm"
|
| 1732 |
+
type: "Permute"
|
| 1733 |
+
bottom: "conv17_2_mbox_loc"
|
| 1734 |
+
top: "conv17_2_mbox_loc_perm"
|
| 1735 |
+
permute_param {
|
| 1736 |
+
order: 0
|
| 1737 |
+
order: 2
|
| 1738 |
+
order: 3
|
| 1739 |
+
order: 1
|
| 1740 |
+
}
|
| 1741 |
+
}
|
| 1742 |
+
layer {
|
| 1743 |
+
name: "conv17_2_mbox_loc_flat"
|
| 1744 |
+
type: "Flatten"
|
| 1745 |
+
bottom: "conv17_2_mbox_loc_perm"
|
| 1746 |
+
top: "conv17_2_mbox_loc_flat"
|
| 1747 |
+
flatten_param {
|
| 1748 |
+
axis: 1
|
| 1749 |
+
}
|
| 1750 |
+
}
|
| 1751 |
+
layer {
|
| 1752 |
+
name: "conv17_2_mbox_conf"
|
| 1753 |
+
type: "Convolution"
|
| 1754 |
+
bottom: "conv17_2"
|
| 1755 |
+
top: "conv17_2_mbox_conf"
|
| 1756 |
+
param {
|
| 1757 |
+
lr_mult: 1.0
|
| 1758 |
+
decay_mult: 1.0
|
| 1759 |
+
}
|
| 1760 |
+
param {
|
| 1761 |
+
lr_mult: 2.0
|
| 1762 |
+
decay_mult: 0.0
|
| 1763 |
+
}
|
| 1764 |
+
convolution_param {
|
| 1765 |
+
num_output: 126
|
| 1766 |
+
kernel_size: 1
|
| 1767 |
+
weight_filler {
|
| 1768 |
+
type: "msra"
|
| 1769 |
+
}
|
| 1770 |
+
bias_filler {
|
| 1771 |
+
type: "constant"
|
| 1772 |
+
value: 0.0
|
| 1773 |
+
}
|
| 1774 |
+
}
|
| 1775 |
+
}
|
| 1776 |
+
layer {
|
| 1777 |
+
name: "conv17_2_mbox_conf_perm"
|
| 1778 |
+
type: "Permute"
|
| 1779 |
+
bottom: "conv17_2_mbox_conf"
|
| 1780 |
+
top: "conv17_2_mbox_conf_perm"
|
| 1781 |
+
permute_param {
|
| 1782 |
+
order: 0
|
| 1783 |
+
order: 2
|
| 1784 |
+
order: 3
|
| 1785 |
+
order: 1
|
| 1786 |
+
}
|
| 1787 |
+
}
|
| 1788 |
+
layer {
|
| 1789 |
+
name: "conv17_2_mbox_conf_flat"
|
| 1790 |
+
type: "Flatten"
|
| 1791 |
+
bottom: "conv17_2_mbox_conf_perm"
|
| 1792 |
+
top: "conv17_2_mbox_conf_flat"
|
| 1793 |
+
flatten_param {
|
| 1794 |
+
axis: 1
|
| 1795 |
+
}
|
| 1796 |
+
}
|
| 1797 |
+
layer {
|
| 1798 |
+
name: "conv17_2_mbox_priorbox"
|
| 1799 |
+
type: "PriorBox"
|
| 1800 |
+
bottom: "conv17_2"
|
| 1801 |
+
bottom: "data"
|
| 1802 |
+
top: "conv17_2_mbox_priorbox"
|
| 1803 |
+
prior_box_param {
|
| 1804 |
+
min_size: 285.0
|
| 1805 |
+
max_size: 300.0
|
| 1806 |
+
aspect_ratio: 2.0
|
| 1807 |
+
aspect_ratio: 3.0
|
| 1808 |
+
flip: true
|
| 1809 |
+
clip: false
|
| 1810 |
+
variance: 0.1
|
| 1811 |
+
variance: 0.1
|
| 1812 |
+
variance: 0.2
|
| 1813 |
+
variance: 0.2
|
| 1814 |
+
offset: 0.5
|
| 1815 |
+
}
|
| 1816 |
+
}
|
| 1817 |
+
layer {
|
| 1818 |
+
name: "mbox_loc"
|
| 1819 |
+
type: "Concat"
|
| 1820 |
+
bottom: "conv11_mbox_loc_flat"
|
| 1821 |
+
bottom: "conv13_mbox_loc_flat"
|
| 1822 |
+
bottom: "conv14_2_mbox_loc_flat"
|
| 1823 |
+
bottom: "conv15_2_mbox_loc_flat"
|
| 1824 |
+
bottom: "conv16_2_mbox_loc_flat"
|
| 1825 |
+
bottom: "conv17_2_mbox_loc_flat"
|
| 1826 |
+
top: "mbox_loc"
|
| 1827 |
+
concat_param {
|
| 1828 |
+
axis: 1
|
| 1829 |
+
}
|
| 1830 |
+
}
|
| 1831 |
+
layer {
|
| 1832 |
+
name: "mbox_conf"
|
| 1833 |
+
type: "Concat"
|
| 1834 |
+
bottom: "conv11_mbox_conf_flat"
|
| 1835 |
+
bottom: "conv13_mbox_conf_flat"
|
| 1836 |
+
bottom: "conv14_2_mbox_conf_flat"
|
| 1837 |
+
bottom: "conv15_2_mbox_conf_flat"
|
| 1838 |
+
bottom: "conv16_2_mbox_conf_flat"
|
| 1839 |
+
bottom: "conv17_2_mbox_conf_flat"
|
| 1840 |
+
top: "mbox_conf"
|
| 1841 |
+
concat_param {
|
| 1842 |
+
axis: 1
|
| 1843 |
+
}
|
| 1844 |
+
}
|
| 1845 |
+
layer {
|
| 1846 |
+
name: "mbox_priorbox"
|
| 1847 |
+
type: "Concat"
|
| 1848 |
+
bottom: "conv11_mbox_priorbox"
|
| 1849 |
+
bottom: "conv13_mbox_priorbox"
|
| 1850 |
+
bottom: "conv14_2_mbox_priorbox"
|
| 1851 |
+
bottom: "conv15_2_mbox_priorbox"
|
| 1852 |
+
bottom: "conv16_2_mbox_priorbox"
|
| 1853 |
+
bottom: "conv17_2_mbox_priorbox"
|
| 1854 |
+
top: "mbox_priorbox"
|
| 1855 |
+
concat_param {
|
| 1856 |
+
axis: 2
|
| 1857 |
+
}
|
| 1858 |
+
}
|
| 1859 |
+
layer {
|
| 1860 |
+
name: "mbox_conf_reshape"
|
| 1861 |
+
type: "Reshape"
|
| 1862 |
+
bottom: "mbox_conf"
|
| 1863 |
+
top: "mbox_conf_reshape"
|
| 1864 |
+
reshape_param {
|
| 1865 |
+
shape {
|
| 1866 |
+
dim: 0
|
| 1867 |
+
dim: -1
|
| 1868 |
+
dim: 21
|
| 1869 |
+
}
|
| 1870 |
+
}
|
| 1871 |
+
}
|
| 1872 |
+
layer {
|
| 1873 |
+
name: "mbox_conf_softmax"
|
| 1874 |
+
type: "Softmax"
|
| 1875 |
+
bottom: "mbox_conf_reshape"
|
| 1876 |
+
top: "mbox_conf_softmax"
|
| 1877 |
+
softmax_param {
|
| 1878 |
+
axis: 2
|
| 1879 |
+
}
|
| 1880 |
+
}
|
| 1881 |
+
layer {
|
| 1882 |
+
name: "mbox_conf_flatten"
|
| 1883 |
+
type: "Flatten"
|
| 1884 |
+
bottom: "mbox_conf_softmax"
|
| 1885 |
+
top: "mbox_conf_flatten"
|
| 1886 |
+
flatten_param {
|
| 1887 |
+
axis: 1
|
| 1888 |
+
}
|
| 1889 |
+
}
|
| 1890 |
+
layer {
|
| 1891 |
+
name: "detection_out"
|
| 1892 |
+
type: "DetectionOutput"
|
| 1893 |
+
bottom: "mbox_loc"
|
| 1894 |
+
bottom: "mbox_conf_flatten"
|
| 1895 |
+
bottom: "mbox_priorbox"
|
| 1896 |
+
top: "detection_out"
|
| 1897 |
+
include {
|
| 1898 |
+
phase: TEST
|
| 1899 |
+
}
|
| 1900 |
+
detection_output_param {
|
| 1901 |
+
num_classes: 21
|
| 1902 |
+
share_location: true
|
| 1903 |
+
background_label_id: 0
|
| 1904 |
+
nms_param {
|
| 1905 |
+
nms_threshold: 0.45
|
| 1906 |
+
top_k: 100
|
| 1907 |
+
}
|
| 1908 |
+
code_type: CENTER_SIZE
|
| 1909 |
+
keep_top_k: 100
|
| 1910 |
+
confidence_threshold: 0.25
|
| 1911 |
+
}
|
| 1912 |
+
}
|
roi/pooler.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from enum import Enum
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from torch import Tensor
|
| 5 |
+
from torch.nn import functional as F
|
| 6 |
+
|
| 7 |
+
# from support.layer.roi_align import ROIAlign
|
| 8 |
+
from torchvision.ops import RoIAlign as ROIAlign
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class Pooler(object):
|
| 12 |
+
|
| 13 |
+
class Mode(Enum):
|
| 14 |
+
POOLING = 'pooling'
|
| 15 |
+
ALIGN = 'align'
|
| 16 |
+
|
| 17 |
+
OPTIONS = ['pooling', 'align']
|
| 18 |
+
|
| 19 |
+
@staticmethod
|
| 20 |
+
def apply(features: Tensor, proposal_bboxes: Tensor, proposal_batch_indices: Tensor, mode: Mode) -> Tensor:
|
| 21 |
+
_, _, feature_map_height, feature_map_width = features.shape
|
| 22 |
+
scale = 1 / 16
|
| 23 |
+
output_size = (7 * 2, 7 * 2)
|
| 24 |
+
|
| 25 |
+
if mode == Pooler.Mode.POOLING:
|
| 26 |
+
pool = []
|
| 27 |
+
for (proposal_bbox, proposal_batch_index) in zip(proposal_bboxes, proposal_batch_indices):
|
| 28 |
+
start_x = max(min(round(proposal_bbox[0].item() * scale), feature_map_width - 1), 0) # [0, feature_map_width)
|
| 29 |
+
start_y = max(min(round(proposal_bbox[1].item() * scale), feature_map_height - 1), 0) # (0, feature_map_height]
|
| 30 |
+
end_x = max(min(round(proposal_bbox[2].item() * scale) + 1, feature_map_width), 1) # [0, feature_map_width)
|
| 31 |
+
end_y = max(min(round(proposal_bbox[3].item() * scale) + 1, feature_map_height), 1) # (0, feature_map_height]
|
| 32 |
+
roi_feature_map = features[proposal_batch_index, :, start_y:end_y, start_x:end_x]
|
| 33 |
+
pool.append(F.adaptive_max_pool2d(input=roi_feature_map, output_size=output_size))
|
| 34 |
+
pool = torch.stack(pool, dim=0)
|
| 35 |
+
elif mode == Pooler.Mode.ALIGN:
|
| 36 |
+
pool = ROIAlign(output_size, spatial_scale=scale, sampling_ratio=0)(
|
| 37 |
+
features,
|
| 38 |
+
torch.cat([proposal_batch_indices.view(-1, 1).float(), proposal_bboxes], dim=1)
|
| 39 |
+
)
|
| 40 |
+
else:
|
| 41 |
+
raise ValueError
|
| 42 |
+
|
| 43 |
+
pool = F.max_pool2d(input=pool, kernel_size=2, stride=2)
|
| 44 |
+
return pool
|
| 45 |
+
|
rpn/region_proposal_network.py
ADDED
|
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Tuple, List, Optional, Union
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
from torch import nn, Tensor
|
| 6 |
+
from torch.nn import functional as F
|
| 7 |
+
|
| 8 |
+
from bbox import BBox
|
| 9 |
+
from extension.functional import beta_smooth_l1_loss
|
| 10 |
+
from torchvision.ops import nms
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class RegionProposalNetwork(nn.Module):
|
| 14 |
+
|
| 15 |
+
def __init__(self, num_features_out: int, anchor_ratios: List[Tuple[int, int]], anchor_sizes: List[int],
|
| 16 |
+
pre_nms_top_n: int, post_nms_top_n: int, anchor_smooth_l1_loss_beta: float):
|
| 17 |
+
super().__init__()
|
| 18 |
+
|
| 19 |
+
self._features = nn.Sequential(
|
| 20 |
+
nn.Conv2d(in_channels=num_features_out, out_channels=512, kernel_size=3, padding=1),
|
| 21 |
+
nn.ReLU()
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
self._anchor_ratios = anchor_ratios
|
| 25 |
+
self._anchor_sizes = anchor_sizes
|
| 26 |
+
|
| 27 |
+
num_anchor_ratios = len(self._anchor_ratios)
|
| 28 |
+
num_anchor_sizes = len(self._anchor_sizes)
|
| 29 |
+
num_anchors = num_anchor_ratios * num_anchor_sizes
|
| 30 |
+
|
| 31 |
+
self._pre_nms_top_n = pre_nms_top_n
|
| 32 |
+
self._post_nms_top_n = post_nms_top_n
|
| 33 |
+
self._anchor_smooth_l1_loss_beta = anchor_smooth_l1_loss_beta
|
| 34 |
+
|
| 35 |
+
self._anchor_objectness = nn.Conv2d(in_channels=512, out_channels=num_anchors * 2, kernel_size=1)
|
| 36 |
+
self._anchor_transformer = nn.Conv2d(in_channels=512, out_channels=num_anchors * 4, kernel_size=1)
|
| 37 |
+
|
| 38 |
+
def forward(self, features: Tensor,
|
| 39 |
+
anchor_bboxes: Optional[Tensor] = None, gt_bboxes_batch: Optional[Tensor] = None,
|
| 40 |
+
image_width: Optional[int]=None, image_height: Optional[int]=None) -> Union[Tuple[Tensor, Tensor], Tuple[Tensor, Tensor, Tensor, Tensor]]:
|
| 41 |
+
batch_size = features.shape[0]
|
| 42 |
+
|
| 43 |
+
features = self._features(features)
|
| 44 |
+
anchor_objectnesses = self._anchor_objectness(features)
|
| 45 |
+
anchor_transformers = self._anchor_transformer(features)
|
| 46 |
+
|
| 47 |
+
anchor_objectnesses = anchor_objectnesses.permute(0, 2, 3, 1).contiguous().view(batch_size, -1, 2)
|
| 48 |
+
anchor_transformers = anchor_transformers.permute(0, 2, 3, 1).contiguous().view(batch_size, -1, 4)
|
| 49 |
+
|
| 50 |
+
if not self.training:
|
| 51 |
+
return anchor_objectnesses, anchor_transformers
|
| 52 |
+
else:
|
| 53 |
+
# remove cross-boundary
|
| 54 |
+
# NOTE: The length of `inside_indices` is guaranteed to be a multiple of `anchor_bboxes.shape[0]` as each batch in `anchor_bboxes` is the same
|
| 55 |
+
inside_indices = BBox.inside(anchor_bboxes, left=0, top=0, right=image_width, bottom=image_height).nonzero().unbind(dim=1)
|
| 56 |
+
inside_anchor_bboxes = anchor_bboxes[inside_indices].view(batch_size, -1, anchor_bboxes.shape[2])
|
| 57 |
+
inside_anchor_objectnesses = anchor_objectnesses[inside_indices].view(batch_size, -1, anchor_objectnesses.shape[2])
|
| 58 |
+
inside_anchor_transformers = anchor_transformers[inside_indices].view(batch_size, -1, anchor_transformers.shape[2])
|
| 59 |
+
|
| 60 |
+
# find labels for each `anchor_bboxes`
|
| 61 |
+
labels = torch.full((batch_size, inside_anchor_bboxes.shape[1]), -1, dtype=torch.long, device=inside_anchor_bboxes.device)
|
| 62 |
+
ious = BBox.iou(inside_anchor_bboxes, gt_bboxes_batch)
|
| 63 |
+
anchor_max_ious, anchor_assignments = ious.max(dim=2)
|
| 64 |
+
gt_max_ious, gt_assignments = ious.max(dim=1)
|
| 65 |
+
anchor_additions = ((ious > 0) & (ious == gt_max_ious.unsqueeze(dim=1))).nonzero()[:, :2].unbind(dim=1)
|
| 66 |
+
labels[anchor_max_ious < 0.3] = 0
|
| 67 |
+
labels[anchor_additions] = 1
|
| 68 |
+
labels[anchor_max_ious >= 0.7] = 1
|
| 69 |
+
|
| 70 |
+
# select 256 x `batch_size` samples
|
| 71 |
+
fg_indices = (labels == 1).nonzero()
|
| 72 |
+
bg_indices = (labels == 0).nonzero()
|
| 73 |
+
fg_indices = fg_indices[torch.randperm(len(fg_indices))[:min(len(fg_indices), 256 * batch_size)]]
|
| 74 |
+
bg_indices = bg_indices[torch.randperm(len(bg_indices))[:256 * batch_size - len(fg_indices)]]
|
| 75 |
+
selected_indices = torch.cat([fg_indices, bg_indices], dim=0)
|
| 76 |
+
selected_indices = selected_indices[torch.randperm(len(selected_indices))].unbind(dim=1)
|
| 77 |
+
|
| 78 |
+
inside_anchor_bboxes = inside_anchor_bboxes[selected_indices]
|
| 79 |
+
gt_bboxes = gt_bboxes_batch[selected_indices[0], anchor_assignments[selected_indices]]
|
| 80 |
+
gt_anchor_objectnesses = labels[selected_indices]
|
| 81 |
+
gt_anchor_transformers = BBox.calc_transformer(inside_anchor_bboxes, gt_bboxes)
|
| 82 |
+
batch_indices = selected_indices[0]
|
| 83 |
+
|
| 84 |
+
anchor_objectness_losses, anchor_transformer_losses = self.loss(inside_anchor_objectnesses[selected_indices],
|
| 85 |
+
inside_anchor_transformers[selected_indices],
|
| 86 |
+
gt_anchor_objectnesses,
|
| 87 |
+
gt_anchor_transformers,
|
| 88 |
+
batch_size, batch_indices)
|
| 89 |
+
|
| 90 |
+
return anchor_objectnesses, anchor_transformers, anchor_objectness_losses, anchor_transformer_losses
|
| 91 |
+
|
| 92 |
+
def loss(self, anchor_objectnesses: Tensor, anchor_transformers: Tensor,
|
| 93 |
+
gt_anchor_objectnesses: Tensor, gt_anchor_transformers: Tensor,
|
| 94 |
+
batch_size: int, batch_indices: Tensor) -> Tuple[Tensor, Tensor]:
|
| 95 |
+
cross_entropies = torch.empty(batch_size, dtype=torch.float, device=anchor_objectnesses.device)
|
| 96 |
+
smooth_l1_losses = torch.empty(batch_size, dtype=torch.float, device=anchor_transformers.device)
|
| 97 |
+
|
| 98 |
+
for batch_index in range(batch_size):
|
| 99 |
+
selected_indices = (batch_indices == batch_index).nonzero().view(-1)
|
| 100 |
+
|
| 101 |
+
cross_entropy = F.cross_entropy(input=anchor_objectnesses[selected_indices],
|
| 102 |
+
target=gt_anchor_objectnesses[selected_indices])
|
| 103 |
+
|
| 104 |
+
fg_indices = gt_anchor_objectnesses[selected_indices].nonzero().view(-1)
|
| 105 |
+
smooth_l1_loss = beta_smooth_l1_loss(input=anchor_transformers[selected_indices][fg_indices],
|
| 106 |
+
target=gt_anchor_transformers[selected_indices][fg_indices],
|
| 107 |
+
beta=self._anchor_smooth_l1_loss_beta)
|
| 108 |
+
|
| 109 |
+
cross_entropies[batch_index] = cross_entropy
|
| 110 |
+
smooth_l1_losses[batch_index] = smooth_l1_loss
|
| 111 |
+
|
| 112 |
+
return cross_entropies, smooth_l1_losses
|
| 113 |
+
|
| 114 |
+
def generate_anchors(self, image_width: int, image_height: int, num_x_anchors: int, num_y_anchors: int) -> Tensor:
|
| 115 |
+
center_ys = np.linspace(start=0, stop=image_height, num=num_y_anchors + 2)[1:-1]
|
| 116 |
+
center_xs = np.linspace(start=0, stop=image_width, num=num_x_anchors + 2)[1:-1]
|
| 117 |
+
ratios = np.array(self._anchor_ratios)
|
| 118 |
+
ratios = ratios[:, 0] / ratios[:, 1]
|
| 119 |
+
sizes = np.array(self._anchor_sizes)
|
| 120 |
+
|
| 121 |
+
# NOTE: it's important to let `center_ys` be the major index (i.e., move horizontally and then vertically) for consistency with 2D convolution
|
| 122 |
+
# giving the string 'ij' returns a meshgrid with matrix indexing, i.e., with shape (#center_ys, #center_xs, #ratios)
|
| 123 |
+
center_ys, center_xs, ratios, sizes = np.meshgrid(center_ys, center_xs, ratios, sizes, indexing='ij')
|
| 124 |
+
|
| 125 |
+
center_ys = center_ys.reshape(-1)
|
| 126 |
+
center_xs = center_xs.reshape(-1)
|
| 127 |
+
ratios = ratios.reshape(-1)
|
| 128 |
+
sizes = sizes.reshape(-1)
|
| 129 |
+
|
| 130 |
+
widths = sizes * np.sqrt(1 / ratios)
|
| 131 |
+
heights = sizes * np.sqrt(ratios)
|
| 132 |
+
|
| 133 |
+
center_based_anchor_bboxes = np.stack((center_xs, center_ys, widths, heights), axis=1)
|
| 134 |
+
center_based_anchor_bboxes = torch.from_numpy(center_based_anchor_bboxes).float()
|
| 135 |
+
anchor_bboxes = BBox.from_center_base(center_based_anchor_bboxes)
|
| 136 |
+
|
| 137 |
+
return anchor_bboxes
|
| 138 |
+
|
| 139 |
+
def generate_proposals(self, anchor_bboxes: Tensor, objectnesses: Tensor, transformers: Tensor, image_width: int, image_height: int) -> Tensor:
|
| 140 |
+
batch_size = anchor_bboxes.shape[0]
|
| 141 |
+
|
| 142 |
+
proposal_bboxes = BBox.apply_transformer(anchor_bboxes, transformers)
|
| 143 |
+
proposal_bboxes = BBox.clip(proposal_bboxes, left=0, top=0, right=image_width, bottom=image_height)
|
| 144 |
+
proposal_probs = F.softmax(objectnesses[:, :, 1], dim=-1)
|
| 145 |
+
|
| 146 |
+
_, sorted_indices = torch.sort(proposal_probs, dim=-1, descending=True)
|
| 147 |
+
nms_proposal_bboxes_batch = []
|
| 148 |
+
|
| 149 |
+
for batch_index in range(batch_size):
|
| 150 |
+
sorted_bboxes = proposal_bboxes[batch_index][sorted_indices[batch_index]][:self._pre_nms_top_n]
|
| 151 |
+
sorted_probs = proposal_probs[batch_index][sorted_indices[batch_index]][:self._pre_nms_top_n]
|
| 152 |
+
threshold = 0.7
|
| 153 |
+
kept_indices = nms(sorted_bboxes, sorted_probs, threshold)
|
| 154 |
+
nms_bboxes = sorted_bboxes[kept_indices][:self._post_nms_top_n]
|
| 155 |
+
nms_proposal_bboxes_batch.append(nms_bboxes)
|
| 156 |
+
|
| 157 |
+
max_nms_proposal_bboxes_length = max([len(it) for it in nms_proposal_bboxes_batch])
|
| 158 |
+
padded_proposal_bboxes = []
|
| 159 |
+
|
| 160 |
+
for nms_proposal_bboxes in nms_proposal_bboxes_batch:
|
| 161 |
+
padded_proposal_bboxes.append(
|
| 162 |
+
torch.cat([
|
| 163 |
+
nms_proposal_bboxes,
|
| 164 |
+
torch.zeros(max_nms_proposal_bboxes_length - len(nms_proposal_bboxes), 4).to(nms_proposal_bboxes)
|
| 165 |
+
])
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
padded_proposal_bboxes = torch.stack(padded_proposal_bboxes, dim=0)
|
| 169 |
+
return padded_proposal_bboxes
|