Spaces:
Paused
Paused
Update generate_answer.py
Browse files- generate_answer.py +9 -6
generate_answer.py
CHANGED
|
@@ -1,11 +1,15 @@
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
from glob import glob
|
| 3 |
import openai
|
| 4 |
from dotenv import load_dotenv
|
|
|
|
| 5 |
from langchain.embeddings import OpenAIEmbeddings
|
| 6 |
from langchain.vectorstores import Chroma
|
| 7 |
from langchain.document_loaders import PyPDFLoader
|
| 8 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
|
| 9 |
from langchain_community.chat_models import ChatOpenAI
|
| 10 |
from langchain.chains import RetrievalQA
|
| 11 |
from langchain.memory import ConversationBufferMemory
|
|
@@ -18,13 +22,12 @@ openai.api_key = api_key
|
|
| 18 |
|
| 19 |
def base_model_chatbot(messages):
|
| 20 |
system_message = [
|
| 21 |
-
{"role": "system", "content": "You are
|
| 22 |
]
|
| 23 |
messages = system_message + messages
|
| 24 |
response = openai.ChatCompletion.create(
|
| 25 |
-
model="gpt-3.5-turbo",
|
| 26 |
-
messages=messages
|
| 27 |
-
max_tokens=1500 # Increase max_tokens limit
|
| 28 |
)
|
| 29 |
return response.choices[0].message['content']
|
| 30 |
|
|
@@ -66,11 +69,11 @@ class ConversationalRetrievalChain:
|
|
| 66 |
retriever=retriever,
|
| 67 |
memory=memory,
|
| 68 |
)
|
| 69 |
-
|
| 70 |
def with_pdf_chatbot(messages):
|
| 71 |
"""Main function to execute the QA system."""
|
| 72 |
query = messages[-1]['content'].strip()
|
| 73 |
|
| 74 |
qa_chain = ConversationalRetrievalChain().create_chain()
|
| 75 |
result = qa_chain({"query": query})
|
| 76 |
-
return result['result']
|
|
|
|
| 1 |
+
### generate_answer.py
|
| 2 |
+
|
| 3 |
import os
|
| 4 |
from glob import glob
|
| 5 |
import openai
|
| 6 |
from dotenv import load_dotenv
|
| 7 |
+
|
| 8 |
from langchain.embeddings import OpenAIEmbeddings
|
| 9 |
from langchain.vectorstores import Chroma
|
| 10 |
from langchain.document_loaders import PyPDFLoader
|
| 11 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 12 |
+
|
| 13 |
from langchain_community.chat_models import ChatOpenAI
|
| 14 |
from langchain.chains import RetrievalQA
|
| 15 |
from langchain.memory import ConversationBufferMemory
|
|
|
|
| 22 |
|
| 23 |
def base_model_chatbot(messages):
|
| 24 |
system_message = [
|
| 25 |
+
{"role": "system", "content": "You are an helpful AI chatbot, that answers questions asked by User."}
|
| 26 |
]
|
| 27 |
messages = system_message + messages
|
| 28 |
response = openai.ChatCompletion.create(
|
| 29 |
+
model="gpt-3.5-turbo", # Ensure the model is specified correctly
|
| 30 |
+
messages=messages
|
|
|
|
| 31 |
)
|
| 32 |
return response.choices[0].message['content']
|
| 33 |
|
|
|
|
| 69 |
retriever=retriever,
|
| 70 |
memory=memory,
|
| 71 |
)
|
| 72 |
+
|
| 73 |
def with_pdf_chatbot(messages):
|
| 74 |
"""Main function to execute the QA system."""
|
| 75 |
query = messages[-1]['content'].strip()
|
| 76 |
|
| 77 |
qa_chain = ConversationalRetrievalChain().create_chain()
|
| 78 |
result = qa_chain({"query": query})
|
| 79 |
+
return result['result']
|