Spaces:
Paused
Paused
Update generate_answer.py
Browse files- generate_answer.py +8 -9
generate_answer.py
CHANGED
|
@@ -1,5 +1,3 @@
|
|
| 1 |
-
### generate_answer.py
|
| 2 |
-
|
| 3 |
import os
|
| 4 |
from glob import glob
|
| 5 |
import openai
|
|
@@ -17,16 +15,15 @@ from langchain.memory import ConversationBufferMemory
|
|
| 17 |
load_dotenv()
|
| 18 |
api_key = os.getenv("OPENAI_API_KEY")
|
| 19 |
|
| 20 |
-
# Corrected line: Set the OpenAI API key correctly
|
| 21 |
openai.api_key = api_key
|
| 22 |
|
| 23 |
def base_model_chatbot(messages):
|
| 24 |
system_message = [
|
| 25 |
-
{"role": "system", "content": "You are
|
| 26 |
]
|
| 27 |
messages = system_message + messages
|
| 28 |
response = openai.ChatCompletion.create(
|
| 29 |
-
model="gpt-3.5-turbo",
|
| 30 |
messages=messages
|
| 31 |
)
|
| 32 |
return response.choices[0].message['content']
|
|
@@ -60,7 +57,11 @@ class ConversationalRetrievalChain:
|
|
| 60 |
self.temperature = temperature
|
| 61 |
|
| 62 |
def create_chain(self):
|
| 63 |
-
model = ChatOpenAI(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
| 65 |
vector_db = VectorDB('docs/')
|
| 66 |
retriever = vector_db.create_vector_db().as_retriever(search_type="similarity", search_kwargs={"k": 2})
|
|
@@ -71,9 +72,7 @@ class ConversationalRetrievalChain:
|
|
| 71 |
)
|
| 72 |
|
| 73 |
def with_pdf_chatbot(messages):
|
| 74 |
-
"""Main function to execute the QA system."""
|
| 75 |
query = messages[-1]['content'].strip()
|
| 76 |
-
|
| 77 |
qa_chain = ConversationalRetrievalChain().create_chain()
|
| 78 |
result = qa_chain({"query": query})
|
| 79 |
-
return result['result']
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
from glob import glob
|
| 3 |
import openai
|
|
|
|
| 15 |
load_dotenv()
|
| 16 |
api_key = os.getenv("OPENAI_API_KEY")
|
| 17 |
|
|
|
|
| 18 |
openai.api_key = api_key
|
| 19 |
|
| 20 |
def base_model_chatbot(messages):
|
| 21 |
system_message = [
|
| 22 |
+
{"role": "system", "content": "You are a helpful AI chatbot that provides clear, complete, and coherent responses to User's questions. Ensure your answers are in full sentences."}
|
| 23 |
]
|
| 24 |
messages = system_message + messages
|
| 25 |
response = openai.ChatCompletion.create(
|
| 26 |
+
model="gpt-3.5-turbo",
|
| 27 |
messages=messages
|
| 28 |
)
|
| 29 |
return response.choices[0].message['content']
|
|
|
|
| 57 |
self.temperature = temperature
|
| 58 |
|
| 59 |
def create_chain(self):
|
| 60 |
+
model = ChatOpenAI(
|
| 61 |
+
model_name=self.model_name,
|
| 62 |
+
temperature=self.temperature,
|
| 63 |
+
system_prompt="You are a knowledgeable AI that answers questions based on provided documents. Always give responses in clear, complete sentences."
|
| 64 |
+
)
|
| 65 |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
| 66 |
vector_db = VectorDB('docs/')
|
| 67 |
retriever = vector_db.create_vector_db().as_retriever(search_type="similarity", search_kwargs={"k": 2})
|
|
|
|
| 72 |
)
|
| 73 |
|
| 74 |
def with_pdf_chatbot(messages):
|
|
|
|
| 75 |
query = messages[-1]['content'].strip()
|
|
|
|
| 76 |
qa_chain = ConversationalRetrievalChain().create_chain()
|
| 77 |
result = qa_chain({"query": query})
|
| 78 |
+
return result['result']
|