File size: 20,830 Bytes
54783a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
from datetime import date, datetime, time, timedelta
import json
from pathlib import Path
import ssl
import tempfile
import xml.etree.ElementTree as ET
from typing import List, Optional, Tuple

import gradio as gr
import folium
from folium.plugins import MarkerCluster
import pandas as pd
from huggingface_hub import hf_hub_download

try:
    from gradio.components import Date as GrDateComponent
except (ImportError, AttributeError):
    GrDateComponent = getattr(gr, "Date", None) or getattr(gr, "DatePicker", None)

try:
    from shapely import wkt as shapely_wkt
    from shapely.geometry import Point

    SHAPELY_AVAILABLE = True
except Exception:  # ImportError or attribute issues
    shapely_wkt = None
    Point = None
    SHAPELY_AVAILABLE = False


DEFAULT_CENTER = "41.9028,12.4964"
DEFAULT_ZOOM = 12
DEFAULT_TILES = "CartoDB positron"
DEFAULT_DATE_PROMPT = "Select the date to pull AIS data."
DEFAULT_TIME_PROMPT = "Set start and end times to describe the daily window."
DEFAULT_DATE = "2025-08-25"
DEFAULT_START_TIME = "10:00:00"
DEFAULT_END_TIME = "12:00:00"
DEFAULT_AOI_WKT = """POLYGON((4.2100 51.3700,4.4800 51.3700,4.5100 51.2900,4.4650 51.1700,4.2500 51.1700,4.1900 51.2500,4.2100 51.3700))"""
HF_REPO_ID = "Lore0123/AISPortal"
HF_FILE_TEMPLATE = "{date}_ais.parquet"
DATE_FMT = "%Y-%m-%d"
DEFAULT_DATE_OBJ = datetime.strptime(DEFAULT_DATE, DATE_FMT).date()
MAX_POINTS = 10_000
BANNER_PATH = (Path(__file__).resolve().parent / "src" / "banner.png")
TILE_OPTIONS = {
    "OpenStreetMap": {
        "tiles": "OpenStreetMap",
        "attr": "© OpenStreetMap contributors",
    },
    "Stamen Terrain": {
        "tiles": "Stamen Terrain",
        "attr": "Map tiles by Stamen Design, CC BY 3.0 — Data © OpenStreetMap contributors",
    },
    "CartoDB positron": {
        "tiles": "https://{s}.basemaps.cartocdn.com/light_all/{z}/{x}/{y}{r}.png",
        "attr": "© OpenStreetMap contributors © CARTO",
    },
    "CartoDB dark_matter": {
        "tiles": "https://{s}.basemaps.cartocdn.com/dark_all/{z}/{x}/{y}{r}.png",
        "attr": "© OpenStreetMap contributors © CARTO",
    },
}


def _parse_center(center: str) -> Tuple[float, float]:
    """
    Parse "lat,lon" into (lat, lon).
    """
    try:
        lat_str, lon_str = [x.strip() for x in center.split(",")]
        lat, lon = float(lat_str), float(lon_str)
        if not (-90 <= lat <= 90 and -180 <= lon <= 180):
            raise ValueError
        return lat, lon
    except Exception:
        # Default: Rome
        return 41.9028, 12.4964


def _parse_date(value) -> Optional[date]:
    if not value:
        return None
    if isinstance(value, date):
        return value
    if isinstance(value, str):
        raw = value.strip()
        if not raw:
            return None
        try:
            return datetime.strptime(raw, DATE_FMT).date()
        except ValueError:
            return None
    return None


def _iterate_dates(start: Optional[date], end: Optional[date]) -> List[date]:
    if start and end:
        if end < start:
            start, end = end, start
    elif start:
        end = start
    elif end:
        start = end
    else:
        return []
    current = start
    dates: List[date] = []
    while current <= end:
        dates.append(current)
        current += timedelta(days=1)
    return dates


def _normalize_column_key(value: str) -> str:
    return "".join(ch for ch in value.lower() if ch.isalnum())


def _find_column(df: pd.DataFrame, candidates: List[str]) -> Optional[str]:
    normalized_map = {}
    for col in df.columns:
        normalized_map.setdefault(_normalize_column_key(col), col)

    for candidate in candidates:
        key = _normalize_column_key(candidate)
        if key in normalized_map:
            return normalized_map[key]

    return None


def _parse_time(value: Optional[str]) -> Optional[time]:
    if not value:
        return None
    if isinstance(value, str):
        raw = value.strip()
        if not raw:
            return None
        for fmt in ("%H:%M:%S", "%H:%M"):
            try:
                parsed = datetime.strptime(raw, fmt)
                return parsed.time()
            except ValueError:
                continue
        return None
    return None


def _build_time_mask(datetimes: pd.Series,
                     start_time_obj: Optional[time],
                     end_time_obj: Optional[time]) -> Optional[pd.Series]:
    if start_time_obj is None and end_time_obj is None:
        return None
    dt_series = pd.to_datetime(datetimes, errors="coerce", utc=False)
    valid = dt_series.notna()
    times = dt_series.dt.time
    cond = pd.Series(True, index=dt_series.index)
    if start_time_obj and end_time_obj:
        if start_time_obj <= end_time_obj:
            cond &= (times >= start_time_obj) & (times <= end_time_obj)
        else:
            cond &= (times >= start_time_obj) | (times <= end_time_obj)
    elif start_time_obj:
        cond &= times >= start_time_obj
    else:
        cond &= times <= end_time_obj
    return cond & valid


def _load_ais_points(start_date: Optional[str],
                     end_date: Optional[str],
                     start_time: Optional[str],
                     end_time: Optional[str]) -> Tuple[pd.DataFrame, List[str]]:
    """Download AIS parquet files, filter them, and return the full filtered rows."""
    start = _parse_date(start_date)
    end = _parse_date(end_date)
    dates = _iterate_dates(start, end)
    if not dates:
        return pd.DataFrame(columns=["name", "lat", "lon", "source_date", "timestamp", "mmsi"]), []

    frames: List[pd.DataFrame] = []
    errors: List[str] = []
    start_time_obj = _parse_time(start_time)
    end_time_obj = _parse_time(end_time)

    for day in dates:
        filename = HF_FILE_TEMPLATE.format(date=day.isoformat())
        try:
            local_path = hf_hub_download(
                repo_id=HF_REPO_ID,
                filename=filename,
                repo_type="dataset"
            )
        except Exception as exc:  # pragma: no cover - network dependent
            errors.append(f"{day}: download failed ({exc})")
            continue

        try:
            df = pd.read_parquet(local_path)
        except Exception as exc:  # pragma: no cover - file dependent
            errors.append(f"{day}: failed to read parquet ({exc})")
            continue

        lat_col = _find_column(df, ["lat", "latitude"])
        lon_col = _find_column(df, ["lon", "longitude", "long", "lng"])
        if lat_col is None or lon_col is None:
            errors.append(f"{day}: missing latitude/longitude columns")
            continue

        time_col = _find_column(df, [
            "tstamp",
            "timestamp",
            "time",
            "datetime",
            "basedatetime",
            "baseDateTime",
            "received_time",
            "receivedtime"
        ])

        if time_col is not None:
            mask = _build_time_mask(df[time_col], start_time_obj, end_time_obj)
            if mask is not None:
                df = df[mask.fillna(False)]
        elif start_time_obj or end_time_obj:
            errors.append(f"{day}: no timestamp column for time filtering")

        if df.empty:
            continue
        lat_series = pd.to_numeric(df[lat_col], errors="coerce")
        lon_series = pd.to_numeric(df[lon_col], errors="coerce")
        valid_mask = lat_series.notna() & lon_series.notna()
        if not valid_mask.any():
            continue

        subset = df.loc[valid_mask].copy()
        subset["lat"] = lat_series.loc[valid_mask].astype(float)
        subset["lon"] = lon_series.loc[valid_mask].astype(float)

        name_col = _find_column(df, ["name", "shipname", "vessel", "imo", "callsign", "vesselname"])
        if name_col is not None:
            subset_names = subset[name_col].fillna("").astype(str)
        else:
            subset_names = pd.Series("", index=subset.index)
        subset["name"] = subset_names.replace({"nan": "", "None": ""})

        subset["source_date"] = day.isoformat()

        mmsi_col = _find_column(df, ["mmsi", "mmsi_id"])
        if mmsi_col is not None:
            subset_mmsi = subset[mmsi_col].fillna("").astype(str)
            subset_mmsi = subset_mmsi.replace({"nan": "", "None": ""})
            subset["mmsi"] = subset_mmsi
        else:
            subset["mmsi"] = ""

        if time_col is not None:
            ts_series = pd.to_datetime(subset[time_col], errors="coerce", utc=True)
            try:
                ts_local = ts_series.dt.tz_convert(None)
            except TypeError:  # already naive
                ts_local = ts_series
            subset["timestamp"] = ts_local.dt.strftime("%Y-%m-%d %H:%M:%S").fillna("")
        else:
            subset["timestamp"] = ""

        frames.append(subset.reset_index(drop=True))

    if not frames:
        return pd.DataFrame(columns=[
            "name",
            "lat",
            "lon",
            "source_date",
            "timestamp",
            "mmsi"
        ]), errors

    result = pd.concat(frames, ignore_index=True)
    return result, errors


def render_map(selected_date,
               start_time: Optional[str],
               end_time: Optional[str],
               aoi_wkt: Optional[str]) -> Tuple[str, str, str]:
    """
    Build a Leaflet map and return full HTML (rendered by Gradio HTML component).
    """
    lat, lon = _parse_center(DEFAULT_CENTER)
    tile_cfg = TILE_OPTIONS[DEFAULT_TILES]
    map_kwargs = {
        "location": [lat, lon],
        "zoom_start": DEFAULT_ZOOM,
        "tiles": tile_cfg.get("tiles", DEFAULT_TILES),
        "control_scale": True,
        "width": "100%",
        "height": "600px",
    }
    attr = tile_cfg.get("attr")
    if attr:
        map_kwargs["attr"] = attr
    m = folium.Map(**map_kwargs)

    # Points
    bounds: List[Tuple[float, float]] = []
    point_count = 0
    error_message: Optional[str] = None
    error_marker_added = False
    selected_date_str = _coerce_date_string(selected_date)
    export_df = pd.DataFrame()
    try:
        export_df, errors = _load_ais_points(selected_date_str, selected_date_str, start_time, end_time)

        if not export_df.empty:
            export_df, aoi_error = _filter_by_aoi(export_df, aoi_wkt)
            if aoi_error:
                errors.append(aoi_error)

        map_df = pd.DataFrame()
        if not export_df.empty:
            map_df = export_df[["name", "lat", "lon", "source_date", "timestamp", "mmsi"]].copy()
            if len(map_df) > MAX_POINTS:
                sampled_idx = map_df.sample(MAX_POINTS, random_state=0).index
                map_df = map_df.loc[sampled_idx]
            map_df = map_df.reset_index(drop=True)

        if not map_df.empty:
            cluster = MarkerCluster(name="AIS Points").add_to(m)
            for _, r in map_df.iterrows():
                name_raw = r.get("name")
                name = str(name_raw).strip() if name_raw is not None else ""
                if name.lower() == "nan":
                    name = ""
                source_date = r.get("source_date", "?")
                timestamp = r.get("timestamp")
                mmsi = str(r.get("mmsi") or "").strip()

                details = []
                if name:
                    details.append(f"Name: {name}")
                if mmsi:
                    details.append(f"MMSI: {mmsi}")
                details.append(f"Date: {source_date}")
                if isinstance(timestamp, str) and timestamp:
                    details.append(f"Timestamp: {timestamp}")
                details.append(f"Lat: {r['lat']:.6f}")
                details.append(f"Lon: {r['lon']:.6f}")

                popup = "<br>".join(details)
                folium.Marker([r["lat"], r["lon"]], popup=popup).add_to(cluster)
                bounds.append((r["lat"], r["lon"]))
            point_count = len(map_df)
        error_message = _summarize_errors(errors)
    except Exception as e:
        error_message = f"AIS data error: {e}"
        _add_error_marker(m, lat, lon, error_message)
        error_marker_added = True

    if error_message and not error_marker_added:
        _add_error_marker(m, lat, lon, error_message)

    # Fit to data if any bounds collected
    if bounds:
        m.fit_bounds(bounds, padding=(20, 20))
    html = m._repr_html_()

    date_range = _format_date_display(selected_date_str, default_prompt=DEFAULT_DATE_PROMPT)
    time_range = _format_range(start_time, end_time, default_prompt=DEFAULT_TIME_PROMPT)
    info_lines = [
        "### Selected Period",
        f"- Date: {date_range}",
        f"- Times: {time_range}",
        f"- Points on map: {point_count}"
    ]
    if error_message:
        info_lines.append(f"- Error: {error_message}")
    ssl_msg = _ssl_warning()
    if ssl_msg:
        info_lines.append(f"- SSL: {ssl_msg}")
    export_payload = export_df.reset_index(drop=True)
    data_json = export_payload.to_json(orient="records") if not export_payload.empty else "[]"
    return html, "\n".join(info_lines), data_json


def _format_range(start: Optional[str], end: Optional[str], default_prompt: str) -> str:
    start_clean = _clean_input(start)
    end_clean = _clean_input(end)
    if not start_clean and not end_clean:
        return default_prompt
    return f"{start_clean or '—'}{end_clean or '—'}"


def _clean_input(value: Optional[str]) -> Optional[str]:
    if value is None:
        return None
    if isinstance(value, str):
        cleaned = value.strip()
        return cleaned or None
    return str(value)


def _filter_by_aoi(df: pd.DataFrame, wkt_text: Optional[str]) -> Tuple[pd.DataFrame, Optional[str]]:
    wkt_clean = _clean_input(wkt_text)
    if not wkt_clean:
        return df, None
    if not SHAPELY_AVAILABLE or shapely_wkt is None or Point is None:
        return df, "AOI filter unavailable: install shapely."
    try:
        geom = shapely_wkt.loads(wkt_clean)
    except Exception as exc:
        return df, f"AOI parse error: {exc}"
    if geom.is_empty:
        return df, "AOI geometry is empty."

    def contains_point(row) -> bool:
        try:
            pt = Point(float(row["lon"]), float(row["lat"]))
        except Exception:
            return False
        return geom.contains(pt) or geom.touches(pt)

    mask = df.apply(contains_point, axis=1)
    if mask.sum() == 0:
        return df.iloc[0:0].copy(), "AOI filter removed all points."
    return df[mask].reset_index(drop=True), None


def _summarize_errors(errors: List[str]) -> Optional[str]:
    if not errors:
        return None
    unique: List[str] = []
    for err in errors:
        if err not in unique:
            unique.append(err)
        if len(unique) == 3:
            break
    extra = len(errors) - len(unique)
    message = "; ".join(unique)
    if extra > 0:
        message += f"; (+{extra} more)"
    return message


def _add_error_marker(map_obj: folium.Map, lat: float, lon: float, message: str) -> None:
    folium.Marker(
        [lat, lon],
        icon=folium.DivIcon(html=f"<div style='color:red;font-weight:bold;'>{message}</div>")
    ).add_to(map_obj)


def _ssl_warning() -> Optional[str]:
    backend = getattr(ssl, "OPENSSL_VERSION", "")
    if "LibreSSL" in backend:
        return "Detected LibreSSL; Hugging Face downloads need OpenSSL 1.1.1+. Use Python from python.org or upgrade SSL."
    return None


def export_data(fmt: str, data_json: Optional[str]) -> str:
    fmt_clean = (fmt or "").strip().upper()
    if not data_json or not data_json.strip():
        raise gr.Error("No AIS data available to export.")
    try:
        records = json.loads(data_json)
    except json.JSONDecodeError as exc:
        raise gr.Error(f"Export failed: invalid data ({exc}).")
    if not records:
        raise gr.Error("No AIS data available to export.")

    df = pd.DataFrame(records)
    if df.empty:
        raise gr.Error("No AIS data available to export.")

    suffix = {
        "CSV": ".csv",
        "JSON": ".json",
        "XML": ".xml",
    }.get(fmt_clean)
    if suffix is None:
        raise gr.Error(f"Unsupported format: {fmt}.")

    with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as tmp:
        path = tmp.name

    if fmt_clean == "CSV":
        df.to_csv(path, index=False)
    elif fmt_clean == "JSON":
        df.to_json(path, orient="records", indent=2)
    else:  # XML
        root = ET.Element("AISData")
        for record in records:
            entry = ET.SubElement(root, "Record")
            for key, value in record.items():
                child = ET.SubElement(entry, key)
                child.text = "" if value is None else str(value)
        tree = ET.ElementTree(root)
        tree.write(path, encoding="utf-8", xml_declaration=True)

    return path


def _coerce_date_string(value) -> Optional[str]:
    parsed = _parse_date(value)
    if parsed is not None:
        return parsed.isoformat()
    cleaned = _clean_input(value)
    return cleaned


def _format_date_display(value: Optional[str], default_prompt: str) -> str:
    parsed = _parse_date(value)
    if parsed is not None:
        return parsed.isoformat()
    cleaned = _clean_input(value)
    return cleaned or default_prompt


with gr.Blocks(title="AIS MAP - ESA") as demo:
    if BANNER_PATH.exists():
        gr.Image(
            value=str(BANNER_PATH),
            show_label=False,
            interactive=False,
            elem_id="banner",
        )
        gr.Markdown(
            """
            #### This data access provides globally collected Automatic Identification System (AIS) data, structured and organized on a daily basis for consistent access and analysis. Lightweight utilities to fetch and normalize AIS (Automatic Identification System) data from the AIS Hub webservice. 
            """
        )
        gr.Markdown(
            """
            *--Developed by ESA Φ-lab - accelerating the future of Earth Observation (EO) through disruptive/transformational innovations and commercialisation.--* 
            """
        )

    gr.Markdown("## Φ-lab Interactive AIS Map")
    gr.Markdown(
        """
        ### Quick guide
        Select the **date** to retrieve AIS snapshots, optionally narrow the **UTC time window**, and focus on your study area by pasting an **AOI polygon** in WKT form. Hit **Apply Filters** to refresh the map; use **Export** to download the full table of filtered messages.
        """
    )

    initial_date_value = DEFAULT_DATE_OBJ if GrDateComponent is not None else DEFAULT_DATE

    with gr.Row():
        if GrDateComponent is not None:
            selected_date = GrDateComponent(
                label="Date",
                value=initial_date_value,
            )
        else:
            selected_date = gr.Textbox(
                label="Date (YYYY-MM-DD)",
                value=initial_date_value,
                placeholder="YYYY-MM-DD",
                scale=1,
                max_lines=1,
                min_width=160,
            )
        start_time = gr.Textbox(
            label="Start time",
            placeholder="HH:MM:SS",
            value=DEFAULT_START_TIME,
            scale=1,
            max_lines=1,
            min_width=120,
        )
        end_time = gr.Textbox(
            label="End time",
            placeholder="HH:MM:SS",
            value=DEFAULT_END_TIME,
            scale=1,
            max_lines=1,
            min_width=120,
        )

    with gr.Row():
        aoi_wkt = gr.Textbox(
            label="AOI (Polygon WKT)",
            placeholder="POLYGON((lon lat, ...))",
            value=DEFAULT_AOI_WKT,
            lines=3,
            max_lines=6,
        )

    btn = gr.Button("Apply Filters", variant="primary")

    initial_map, initial_info, initial_data = render_map(
        initial_date_value,
        DEFAULT_START_TIME,
        DEFAULT_END_TIME,
        DEFAULT_AOI_WKT
    )
    out = gr.HTML(label="Map", value=initial_map, elem_id="map-view")
    period = gr.Markdown(value=initial_info, elem_id="period-info")
    data_state = gr.State(initial_data)

    input_components = [selected_date, start_time, end_time, aoi_wkt]

    with gr.Row():
        export_format = gr.Dropdown(
            ["CSV", "JSON", "XML"],
            value="CSV",
            label="Export format",
            scale=1,
        )
        export_btn = gr.Button("Export", variant="secondary")
        download = gr.File(label="Download", file_count="single")

    demo.load(render_map, inputs=input_components, outputs=[out, period, data_state])
    btn.click(render_map, inputs=input_components, outputs=[out, period, data_state])
    export_btn.click(export_data, inputs=[export_format, data_state], outputs=download)

if __name__ == "__main__":
    demo.launch(share=True)