sateliteia / app.py
sixto1331's picture
Update app.py
eeadf94 verified
import os
import io
import torch
from flask import Flask, request, jsonify
from transformers import SegformerForImageClassification, SegformerImageProcessor
from PIL import Image
app = Flask(__name__)
# =============================================================================
# 1. CONFIGURACIÓN Y CARGA DEL MODELO
# =============================================================================
# Ruta donde subiste tu carpeta 'model' en Hugging Face
MODEL_PATH = "./model"
BASE_MODEL_NAME = "nvidia/mit-b0" # Respaldo para el procesador
print("🔄 Cargando sistema de IA...")
try:
# Cargar Procesador (Intenta local, si falla usa el de NVIDIA)
try:
processor = SegformerImageProcessor.from_pretrained(MODEL_PATH)
except:
print("⚠️ Procesador local no encontrado, usando base nvidia/mit-b0")
processor = SegformerImageProcessor.from_pretrained(BASE_MODEL_NAME)
# Cargar Modelo Entrenado
model = SegformerForImageClassification.from_pretrained(MODEL_PATH)
model.eval() # Modo evaluación (ahorra memoria y es más rápido)
print("✅ Modelo SegFormer cargado exitosamente.")
print(f" - Clases disponibles: {model.config.id2label}")
except Exception as e:
print(f"❌ ERROR FATAL CARGANDO MODELO: {e}")
# =============================================================================
# 2. RUTAS DE LA API
# =============================================================================
@app.route('/', methods=['GET'])
def home():
return "API NOM-083 (SegFormer) - Estado: ACTIVO 🟢"
@app.route('/predict', methods=['POST'])
def predict():
# Validación básica
if 'image' not in request.files:
return jsonify({"error": "No se envió el campo 'image'"}), 400
try:
file = request.files['image']
# --- CORRECCIÓN "A PRUEBA DE BALAS" ---
# Leemos los bytes del archivo directamente a la memoria RAM.
# Esto evita el error "cannot identify image file" con archivos temporales.
img_bytes = file.read()
image = Image.open(io.BytesIO(img_bytes)).convert("RGB")
# Preprocesamiento
inputs = processor(images=image, return_tensors="pt")
# Inferencia
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
# Resultados (Softmax para porcentaje)
probs = torch.nn.functional.softmax(logits, dim=-1)
top_score, top_idx = probs.max(1)
clase_nombre = model.config.id2label[top_idx.item()]
confianza = top_score.item() * 100
# Respuesta JSON limpia
return jsonify({
"status": "success",
"clase": clase_nombre,
"confianza": round(confianza, 2),
"mensaje": f"Análisis: {clase_nombre}"
})
except Exception as e:
print(f"❌ Error interno: {e}")
return jsonify({"error": str(e), "status": "error"}), 500
# =============================================================================
# 3. INICIO DEL SERVIDOR
# =============================================================================
if __name__ == '__main__':
# Puerto 7860 es el estándar de Hugging Face Spaces
app.run(host='0.0.0.0', port=7860)