Update app.py
Browse files
app.py
CHANGED
|
@@ -0,0 +1,477 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import openai
|
| 2 |
+
from langchain_community.document_loaders import PyPDFDirectoryLoader
|
| 3 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 4 |
+
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
|
| 5 |
+
from langchain_chroma import Chroma
|
| 6 |
+
import chromadb
|
| 7 |
+
import uuid
|
| 8 |
+
|
| 9 |
+
from docx import Document
|
| 10 |
+
from datetime import datetime
|
| 11 |
+
from docx.shared import Pt, RGBColor
|
| 12 |
+
from docx import Document
|
| 13 |
+
from docx.shared import Pt, RGBColor
|
| 14 |
+
from docx.oxml import OxmlElement, ns
|
| 15 |
+
from datetime import datetime
|
| 16 |
+
import os
|
| 17 |
+
import re
|
| 18 |
+
|
| 19 |
+
import uuid
|
| 20 |
+
import tempfile
|
| 21 |
+
import shutil
|
| 22 |
+
import time
|
| 23 |
+
|
| 24 |
+
import gradio as gr
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
# Panel Kontrolny #
|
| 28 |
+
HFS_vs_GoogleColab = 1
|
| 29 |
+
|
| 30 |
+
# Access
|
| 31 |
+
if HFS_vs_GoogleColab == 0:
|
| 32 |
+
from google.colab import drive
|
| 33 |
+
drive.mount('/content/drive')
|
| 34 |
+
|
| 35 |
+
class CFG:
|
| 36 |
+
BASE_PATH = r'/content/drive/MyDrive/Colab Notebooks/MyProjects/Asystent_Analityka/' if HFS_vs_GoogleColab == 0 else "./"
|
| 37 |
+
nazwa_projektu_HF = "etfy" # zrobić automatyczny przełącznik GC vs HFS - asystent vs chatbot
|
| 38 |
+
rola = "Jesteś asystentem doradcy finansowego"
|
| 39 |
+
kolekcja_bd = "etfy"
|
| 40 |
+
# jeszcze można dodać nazwy i opisy Interface i ChatBota
|
| 41 |
+
model_llm = "gpt-4o-mini" # gpt-4o-mini, gpt-4o, o1-mini, gpt-4o, claude-3-opus-20240229, speakleash/Bielik-11B-v2.3-Instruct
|
| 42 |
+
temperature = 0.6 # od 0.1 do 0.6
|
| 43 |
+
model_embeddings = "text-embedding-3-small" # "text-embedding-ada-002", text-embedding-3-small, text-embedding-3-large, ipipan/silver-retriever-base-v1.1 (razem z Bielkiem)
|
| 44 |
+
dimensions_embeddings = 1536
|
| 45 |
+
chunk_size = 3200 # / 500 / 1500
|
| 46 |
+
chunk_overlap = 500 # / 200 / 100 / 35 / 200
|
| 47 |
+
|
| 48 |
+
# No_ReRanking SMALL
|
| 49 |
+
retriever_num_base_results = 5
|
| 50 |
+
reranked_num_results = 3
|
| 51 |
+
|
| 52 |
+
if HFS_vs_GoogleColab == 1:
|
| 53 |
+
# Hugging Face Secrets
|
| 54 |
+
openai_api_key = os.getenv("OPENAI_API_KEY")
|
| 55 |
+
openai.api_key = openai_api_key
|
| 56 |
+
# na HFS dodać do Secrets w Settings
|
| 57 |
+
else:
|
| 58 |
+
# Google Colab Secrets
|
| 59 |
+
from google.colab import userdata
|
| 60 |
+
os.environ["OPENAI_API_KEY"] = userdata.get('Elephant-key')
|
| 61 |
+
|
| 62 |
+
# client = OpenAI(api_key = userdata.get('Elephant-key'))
|
| 63 |
+
# client = Anthropic(api_key = userdata.get('anthropic-key'))
|
| 64 |
+
|
| 65 |
+
# Ścieżki do konkretnych katalogów dla konkretnych spółek
|
| 66 |
+
DATA_PATH = os.path.join(CFG.BASE_PATH, f"data_{CFG.kolekcja_bd}")
|
| 67 |
+
CHROMA_PATH = os.path.join(CFG.BASE_PATH, f"chroma_db_{CFG.kolekcja_bd}")
|
| 68 |
+
TEMP_PATH = os.path.join(CFG.BASE_PATH, f"answers_{CFG.kolekcja_bd}")
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
# Create the DATA directory if it doesn't exist
|
| 73 |
+
os.makedirs(DATA_PATH, exist_ok=True)
|
| 74 |
+
|
| 75 |
+
# Create the CHROMA directory if it doesn't exist
|
| 76 |
+
os.makedirs(CHROMA_PATH, exist_ok=True)
|
| 77 |
+
|
| 78 |
+
# Create the TEMP directory if it doesn't exist
|
| 79 |
+
os.makedirs(TEMP_PATH, exist_ok=True)
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def initiate_embeding_model(model_embeddings=CFG.model_embeddings, model_dimensions=CFG.dimensions_embeddings):
|
| 84 |
+
# initiate the embeddings model
|
| 85 |
+
embeddings_model = OpenAIEmbeddings(
|
| 86 |
+
model = model_embeddings,
|
| 87 |
+
dimensions =model_dimensions
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
return embeddings_model
|
| 91 |
+
|
| 92 |
+
embeddings_model = initiate_embeding_model(CFG.model_embeddings, CFG.dimensions_embeddings)
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
# !!!
|
| 97 |
+
# To pewnie należy zmienić, żeby najpierw sprawdzał, czy istnieje taka baza - czyli żeby tylko inicjował ją a nie tworzył
|
| 98 |
+
# !!!
|
| 99 |
+
|
| 100 |
+
def create_vector_store(embeddings_model, CHROMA_PATH):
|
| 101 |
+
# Tworzenie pustej bazy ChromaDB - (!) natywnie, nie przez LangChain
|
| 102 |
+
client = chromadb.PersistentClient(path=CHROMA_PATH)
|
| 103 |
+
|
| 104 |
+
# initiate the vector store
|
| 105 |
+
vector_store = Chroma(
|
| 106 |
+
embedding_function = embeddings_model,
|
| 107 |
+
persist_directory = CHROMA_PATH,
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
# Sprawdzenie, czy baza jest pusta (powinna być)
|
| 111 |
+
print("Dostępne kolekcje:", client.list_collections())
|
| 112 |
+
|
| 113 |
+
return vector_store, client
|
| 114 |
+
|
| 115 |
+
vector_store, client = create_vector_store(embeddings_model, CHROMA_PATH)
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def read_data_from_chroma(collection_name):
|
| 120 |
+
# Set up the vectorstore to be the retriever
|
| 121 |
+
|
| 122 |
+
# 📌 1. Inicjalizacja kolekcji
|
| 123 |
+
vector_store = Chroma(
|
| 124 |
+
collection_name=collection_name,
|
| 125 |
+
embedding_function=embeddings_model,
|
| 126 |
+
persist_directory=CHROMA_PATH,
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
# Określenie liczby chunków zwracanych przez retriever
|
| 130 |
+
base_num_results = CFG.retriever_num_base_results
|
| 131 |
+
|
| 132 |
+
# Chroma nie obsługuje rerankingu, więc nie działa "fetch_k" i trzeba albo samemu zrobić reranking
|
| 133 |
+
# przy pomocy LLM (poniżej) albo użyć jakieś inne biblioteki robiącej to automatycznie (MultiQueryRetriever)
|
| 134 |
+
#rr_num_results = CFG.reranked_num_results
|
| 135 |
+
|
| 136 |
+
retriever = vector_store.as_retriever(search_kwargs={"k": base_num_results})
|
| 137 |
+
|
| 138 |
+
return retriever
|
| 139 |
+
|
| 140 |
+
# usatw kolekcję do odczytu
|
| 141 |
+
collection_name = CFG.kolekcja_bd
|
| 142 |
+
retriever = read_data_from_chroma(collection_name)
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
# initiate the model
|
| 147 |
+
llm = ChatOpenAI(temperature=CFG.temperature, model=CFG.model_llm)
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
def response(query, historia=None):
|
| 152 |
+
# NO_ReRanking chunków
|
| 153 |
+
relevant_chunks = retriever.invoke(query)
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
# add all the chunks to 'knowledge'
|
| 157 |
+
knowledge = ""
|
| 158 |
+
sources_markdown = ""
|
| 159 |
+
zrodla = "" # ✅ Źródła dla pliku Word
|
| 160 |
+
cytaty = ""
|
| 161 |
+
nazwa_projektu = CFG.nazwa_projektu_HF
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
if HFS_vs_GoogleColab == 1:
|
| 165 |
+
# Dynamiczny link do GFS
|
| 166 |
+
# Pobranie nazwy aktywnego projektu Spaces (jeśli uruchomiony na HF)
|
| 167 |
+
HF_SPACE_ID = os.getenv("SPACE_ID", "smolinski/test") # Domyślnie "test", jeśli brak zmiennej
|
| 168 |
+
|
| 169 |
+
# Tworzenie dynamicznego BASE_URL dla aktualnego projektu
|
| 170 |
+
BASE_URL = f"https://huggingface.co/spaces/{HF_SPACE_ID}/resolve/main/data_{CFG.kolekcja_bd}/"
|
| 171 |
+
else:
|
| 172 |
+
BASE_URL = DATA_PATH + "/"
|
| 173 |
+
|
| 174 |
+
for relevant_chunk in relevant_chunks:
|
| 175 |
+
# Tworzenie linku do źródła
|
| 176 |
+
full_source = relevant_chunk.metadata.get("source", "Nieznane źródło") # Pobiera źródło
|
| 177 |
+
file_name = os.path.basename(full_source) # Usuwa ścieżkę, zostawia nazwę pliku
|
| 178 |
+
file_link = f"{BASE_URL}{file_name}"
|
| 179 |
+
file_link = file_link.replace(' ', '%20') # na wypadek spacji w nazwie – kodujemy je do URL
|
| 180 |
+
|
| 181 |
+
#page_number = relevant_chunk.metadata.get("page_number", "nieznana strona") # Pobranie numeru strony
|
| 182 |
+
page_number_raw = relevant_chunk.metadata.get("page_number", None)
|
| 183 |
+
try:
|
| 184 |
+
page_number = int(page_number_raw) + 1
|
| 185 |
+
page_number = str(page_number)
|
| 186 |
+
except (ValueError, TypeError):
|
| 187 |
+
page_number = "nieznana strona"
|
| 188 |
+
|
| 189 |
+
# ✅ Linki zapisane w Markdownie dla Gradio
|
| 190 |
+
sources_markdown += f"\n- {file_name}, str. {page_number}: [otwórz]({file_link})"
|
| 191 |
+
|
| 192 |
+
# ✅ Chunki w osobnej zmiennej
|
| 193 |
+
cytaty += f"Cytat z {file_name}, strona {page_number}:\n\n{relevant_chunk.page_content}\n\n---\n\n"
|
| 194 |
+
|
| 195 |
+
knowledge += relevant_chunk.page_content + "\n\n---\n\n"
|
| 196 |
+
|
| 197 |
+
# print(cytaty)
|
| 198 |
+
|
| 199 |
+
# dodajemy historię do prompta (jeśli istnieje)
|
| 200 |
+
historia_text = ""
|
| 201 |
+
if historia:
|
| 202 |
+
for i, (q, a) in enumerate(historia[-5:], 1):
|
| 203 |
+
historia_text += f"\nPoprzednia rozmowa {i}:\nPytanie: {q}\nOdpowiedź: {a}\n"
|
| 204 |
+
|
| 205 |
+
# make the call to the LLM (including prompt)
|
| 206 |
+
if query is not None:
|
| 207 |
+
rag_prompt = f"""
|
| 208 |
+
{CFG.rola}, który szczegółowo i dokładnie odpowiada na pytania w oparciu o przekazaną wiedzę.
|
| 209 |
+
Dziel się wszystkimi posiadanymi informacjami na dany temat, tak by Twoje odpowiedzi były wyczerpujące.
|
| 210 |
+
Na pytanie o ETF-y na GPW wymieniaj wszystkie dostępne, chyba że to pytanie szczegółowe o etf-y long, short, lewarowane itp.
|
| 211 |
+
Na pytania o aktualne notowania odpowiadaj: Aktualne notowania dostępne są na stronie GPW.
|
| 212 |
+
Podczas udzielania odpowiedzi korzystaj wyłącznie z poniższych informacji zawartych w sekcji „Wiedza”.
|
| 213 |
+
Bądź miły i uprzejmy, ale rzeczowy. Przykładaj większą wagę do nowszych informacji.
|
| 214 |
+
Jeśli pytanie jest zbyt ogólne nie odpowiadaj na nie, lecz poproś o doprecyzowanie.
|
| 215 |
+
Jeśli nie znasz odpowiedzi, napisz: Niestety nie posiadam informacji na ten temat. NIE WYMYŚLAJ NICZEGO.\n\n
|
| 216 |
+
|
| 217 |
+
{historia_text}
|
| 218 |
+
|
| 219 |
+
Pytanie: {query}
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
Wiedza:\n {knowledge}
|
| 224 |
+
|
| 225 |
+
"""
|
| 226 |
+
|
| 227 |
+
# the response to the Gradio App
|
| 228 |
+
response = llm(rag_prompt)
|
| 229 |
+
|
| 230 |
+
# return response.content if response and response.content else "Brak odpowiedzi.", sources_markdown, zrodla, cytaty # ✅ Teraz zwracamy także źródła dla pliku Word
|
| 231 |
+
|
| 232 |
+
return response.content if response and response.content else "Brak odpowiedzi.", sources_markdown, cytaty
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
def zaktualizuj_historie(pytanie, odpowiedz, historia):
|
| 238 |
+
historia.append((pytanie, odpowiedz))
|
| 239 |
+
return historia[-5:]
|
| 240 |
+
|
| 241 |
+
def wyczysc_formularz():
|
| 242 |
+
return "", "", "", []
|
| 243 |
+
|
| 244 |
+
# ✅ Funkcja do dodania cytatów do odpowiedzi
|
| 245 |
+
def dodaj_cytaty(odpowiedz, cytaty):
|
| 246 |
+
return f"{odpowiedz}\n\n---\n**Cytaty ze śródeł**\n---\n\n{cytaty}" if cytaty else odpowiedz
|
| 247 |
+
|
| 248 |
+
# 1. Inicjalizacja unikalnego folderu sesji
|
| 249 |
+
|
| 250 |
+
def init_user_session():
|
| 251 |
+
cleanup_old_sessions(base_path=tempfile.gettempdir(), max_age_days=1)
|
| 252 |
+
session_id = str(uuid.uuid4())
|
| 253 |
+
user_temp_dir = os.path.join(tempfile.gettempdir(), f"asystent_{session_id}")
|
| 254 |
+
os.makedirs(user_temp_dir, exist_ok=True)
|
| 255 |
+
return user_temp_dir
|
| 256 |
+
|
| 257 |
+
# 2. Czyszczenie katalogów starszych niż 1 dzień
|
| 258 |
+
|
| 259 |
+
def cleanup_old_sessions(base_path, max_age_days=1):
|
| 260 |
+
now = time.time()
|
| 261 |
+
for folder in os.listdir(base_path):
|
| 262 |
+
if folder.startswith("asystent_"):
|
| 263 |
+
folder_path = os.path.join(base_path, folder)
|
| 264 |
+
if os.path.isdir(folder_path):
|
| 265 |
+
folder_age = now - os.path.getctime(folder_path)
|
| 266 |
+
if folder_age > max_age_days * 86400:
|
| 267 |
+
shutil.rmtree(folder_path)
|
| 268 |
+
print(f"Usunięto stary folder sesji: {folder_path}")
|
| 269 |
+
|
| 270 |
+
# 3. Zapis odpowiedzi do pliku .docx
|
| 271 |
+
|
| 272 |
+
def zapisz_odpowiedz(odpowiedz, pytanie, sources, user_path):
|
| 273 |
+
if not odpowiedz or odpowiedz.strip() == "" or not pytanie.strip():
|
| 274 |
+
print("Błąd: Odpowiedź lub pytanie są puste!")
|
| 275 |
+
return None
|
| 276 |
+
|
| 277 |
+
date_str = datetime.now().strftime("%Y-%m-%d")
|
| 278 |
+
file_name = "".join(c if c.isalnum() or c in (" ", "_", "-") else "_" for c in pytanie)[:50]
|
| 279 |
+
file_path = os.path.join(user_path, f"{file_name}_{date_str}.docx")
|
| 280 |
+
|
| 281 |
+
try:
|
| 282 |
+
doc = Document()
|
| 283 |
+
|
| 284 |
+
def formatuj_naglowek(paragraph, text, font_size=14, color=(0, 0, 0), bold=True):
|
| 285 |
+
run = paragraph.add_run(text)
|
| 286 |
+
run.bold = bold
|
| 287 |
+
run.font.size = Pt(font_size)
|
| 288 |
+
run.font.color.rgb = RGBColor(*color)
|
| 289 |
+
run.font.name = "Calibri"
|
| 290 |
+
paragraph.paragraph_format.line_spacing = 1.25
|
| 291 |
+
paragraph.paragraph_format.space_before = Pt(5)
|
| 292 |
+
paragraph.paragraph_format.space_after = Pt(0)
|
| 293 |
+
|
| 294 |
+
def formatuj_paragraf(paragraph):
|
| 295 |
+
for run in paragraph.runs:
|
| 296 |
+
run.font.name = "Calibri"
|
| 297 |
+
run.font.size = Pt(12)
|
| 298 |
+
paragraph.paragraph_format.line_spacing = 1.25
|
| 299 |
+
paragraph.paragraph_format.space_before = Pt(0)
|
| 300 |
+
paragraph.paragraph_format.space_after = Pt(5)
|
| 301 |
+
|
| 302 |
+
p1 = doc.add_paragraph()
|
| 303 |
+
formatuj_naglowek(p1, "Pytanie:")
|
| 304 |
+
p1 = doc.add_paragraph(pytanie)
|
| 305 |
+
formatuj_paragraf(p1)
|
| 306 |
+
|
| 307 |
+
doc.add_paragraph(" ")
|
| 308 |
+
|
| 309 |
+
p2 = doc.add_paragraph()
|
| 310 |
+
formatuj_naglowek(p2, "Odpowiedź:")
|
| 311 |
+
p2 = doc.add_paragraph(odpowiedz)
|
| 312 |
+
formatuj_paragraf(p2)
|
| 313 |
+
|
| 314 |
+
doc.add_paragraph(" ")
|
| 315 |
+
|
| 316 |
+
if sources and sources.strip():
|
| 317 |
+
p3 = doc.add_paragraph()
|
| 318 |
+
formatuj_naglowek(p3, "Źródła:")
|
| 319 |
+
p3 = doc.add_paragraph(re.sub(r":.*", "", sources))
|
| 320 |
+
formatuj_paragraf(p3)
|
| 321 |
+
|
| 322 |
+
doc.save(file_path)
|
| 323 |
+
print(f"Plik zapisany: {file_path}")
|
| 324 |
+
return file_path if os.path.exists(file_path) else None
|
| 325 |
+
|
| 326 |
+
except Exception as e:
|
| 327 |
+
print(f"Błąd podczas zapisu pliku: {e}")
|
| 328 |
+
return None
|
| 329 |
+
|
| 330 |
+
# 4. Lista plików użytkownika
|
| 331 |
+
|
| 332 |
+
def lista_plikow(user_path):
|
| 333 |
+
pliki = [os.path.join(user_path, f) for f in os.listdir(user_path) if f.endswith(".docx")]
|
| 334 |
+
pliki.sort(key=os.path.getctime, reverse=True)
|
| 335 |
+
return pliki if pliki else None
|
| 336 |
+
|
| 337 |
+
# 5. Czyszczenie folderu użytkownika
|
| 338 |
+
|
| 339 |
+
def wyczysc_folder(user_path):
|
| 340 |
+
if os.path.exists(user_path):
|
| 341 |
+
shutil.rmtree(user_path)
|
| 342 |
+
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
# call this function for every message added to the chatbot
|
| 346 |
+
def stream_response(query, history):
|
| 347 |
+
"""Obsługuje strumieniowanie i poprawnie czyści pole tekstowe."""
|
| 348 |
+
|
| 349 |
+
history = history or [] # Inicjalizacja pustej historii, jeśli brak danych
|
| 350 |
+
|
| 351 |
+
# Pobranie pasujących fragmentów wiedzy
|
| 352 |
+
relevant_chunks = retriever.invoke(query)
|
| 353 |
+
knowledge = "\n\n---\n\n".join([relevant_chunk.page_content for relevant_chunk in relevant_chunks])
|
| 354 |
+
|
| 355 |
+
# Tworzenie promptu dla modelu LLM
|
| 356 |
+
rag_prompt = f"""
|
| 357 |
+
{CFG.rola}, który szczegółowo i dokładnie odpowiada na pytania w oparciu o przekazaną wiedzę.
|
| 358 |
+
Dziel się wszystkimi posiadanymi informacjami na dany temat, tak by Twoje odpowiedzi były wyczerpujące.
|
| 359 |
+
Na pytanie o ETF-y na GPW wymieniaj wszystkie dostępne, chyba że to pytanie szczegółowe o etf-y long, short, lewarowane itp.
|
| 360 |
+
Na pytania o aktualne notowania odpowiadaj: Aktualne notowania dostępne są na stronie GPW.
|
| 361 |
+
Podczas udzielania odpowiedzi korzystaj wyłącznie z poniższych informacji zawartych w sekcji „Wiedza”.
|
| 362 |
+
Bądź miły i uprzejmy, ale rzeczowy. Przykładaj większą wagę do nowszych informacji.
|
| 363 |
+
Jeśli pytanie jest zbyt ogólne nie odpowiadaj na nie, lecz poproś o doprecyzowanie.
|
| 364 |
+
Jeśli nie znasz odpowiedzi, napisz: Niestety nie posiadam informacji na ten temat. NIE WYMYŚLAJ NICZEGO.\n\n
|
| 365 |
+
|
| 366 |
+
Pytanie: {query}\n\n
|
| 367 |
+
|
| 368 |
+
Historia rozmowy:\n {history}
|
| 369 |
+
|
| 370 |
+
Wiedza:\n {knowledge}
|
| 371 |
+
"""
|
| 372 |
+
|
| 373 |
+
print("Prompt:\n", rag_prompt)
|
| 374 |
+
print("Odpowiedź:")
|
| 375 |
+
|
| 376 |
+
# Strumieniowanie odpowiedzi do Gradio
|
| 377 |
+
partial_message = ""
|
| 378 |
+
|
| 379 |
+
for response in llm.stream(rag_prompt):
|
| 380 |
+
partial_message += response.content
|
| 381 |
+
yield history + [(query, partial_message)], query # **Tymczasowo zwracamy query, by pole nie było puste**
|
| 382 |
+
|
| 383 |
+
# Po zakończeniu strumieniowania dodajemy pełną wiadomość do historii i czyścimy input_text
|
| 384 |
+
history.append((query, partial_message))
|
| 385 |
+
yield history, "" # **Finalnie zwracamy pusty string, by wyczyścić pole tekstowe**
|
| 386 |
+
|
| 387 |
+
|
| 388 |
+
|
| 389 |
+
with gr.Blocks(css="""
|
| 390 |
+
.button_wyczysc-color {
|
| 391 |
+
background-color: #A9A9A9 !important;
|
| 392 |
+
color: white !important;
|
| 393 |
+
}
|
| 394 |
+
""") as gui:
|
| 395 |
+
|
| 396 |
+
session_dir = gr.State(init_user_session())
|
| 397 |
+
historia_formularza = gr.State([])
|
| 398 |
+
|
| 399 |
+
gr.Markdown("# Asystent Finansowy")
|
| 400 |
+
gr.Markdown("### Odpowiadam na pytania z zakresu ETF-ów notowanych na GPW.")
|
| 401 |
+
gr.Markdown("###### Pamiętaj jestem tylko chatbotem i czasami się mylę, a moje odpowiedzi nie mogą być traktowane jako rekomendacje inwestycyjne!")
|
| 402 |
+
|
| 403 |
+
with gr.Tabs():
|
| 404 |
+
|
| 405 |
+
# ChatBot
|
| 406 |
+
with gr.TabItem("💬 Chat"):
|
| 407 |
+
chatbot = gr.Chatbot()
|
| 408 |
+
input_text_chat = gr.Textbox(placeholder="Napisz tutaj pytanie...", container=False, autoscroll=True, scale=7)
|
| 409 |
+
input_text_chat.submit(fn=stream_response, inputs=[input_text_chat, chatbot], outputs=[chatbot, input_text_chat])
|
| 410 |
+
|
| 411 |
+
# Formularz
|
| 412 |
+
with gr.TabItem("📝 Formularz"):
|
| 413 |
+
input_text_form = gr.Textbox(label="Zadaj pytanie:", placeholder="Napisz tutaj pytanie...", lines=2, interactive=True)
|
| 414 |
+
|
| 415 |
+
with gr.Row():
|
| 416 |
+
with gr.Column(scale=1):
|
| 417 |
+
submit_button = gr.Button("Wyślij pytanie")
|
| 418 |
+
with gr.Column(scale=1):
|
| 419 |
+
clear_answer_button = gr.Button("Wyczyść formularz", elem_classes="button_wyczysc-color")
|
| 420 |
+
with gr.Column(scale=7):
|
| 421 |
+
gr.Markdown("")
|
| 422 |
+
|
| 423 |
+
output_answer = gr.Textbox(label="Odpowiedź:", interactive=False, lines=5)
|
| 424 |
+
output_cytaty = gr.State("")
|
| 425 |
+
|
| 426 |
+
with gr.Row():
|
| 427 |
+
with gr.Column(scale=1):
|
| 428 |
+
zacytuj_button = gr.Button("Przytocz źródła")
|
| 429 |
+
with gr.Column(scale=8):
|
| 430 |
+
gr.Markdown("")
|
| 431 |
+
|
| 432 |
+
gr.Markdown("### Źródła:")
|
| 433 |
+
output_sources = gr.Markdown()
|
| 434 |
+
|
| 435 |
+
gr.Markdown("### Pobierz odpowiedzi:")
|
| 436 |
+
download_files = gr.File(label="Pliki do pobrania", interactive=False, file_types=[".docx"])
|
| 437 |
+
|
| 438 |
+
# Logika przycisków
|
| 439 |
+
submit_button.click(
|
| 440 |
+
response,
|
| 441 |
+
inputs=[input_text_form, historia_formularza],
|
| 442 |
+
outputs=[output_answer, output_sources, output_cytaty]
|
| 443 |
+
).then(
|
| 444 |
+
zaktualizuj_historie,
|
| 445 |
+
inputs=[input_text_form, output_answer, historia_formularza],
|
| 446 |
+
outputs=historia_formularza
|
| 447 |
+
).then(
|
| 448 |
+
zapisz_odpowiedz,
|
| 449 |
+
inputs=[output_answer, input_text_form, output_sources, session_dir],
|
| 450 |
+
outputs=None
|
| 451 |
+
).then(
|
| 452 |
+
lista_plikow,
|
| 453 |
+
inputs=session_dir,
|
| 454 |
+
outputs=download_files
|
| 455 |
+
)
|
| 456 |
+
|
| 457 |
+
clear_answer_button.click(
|
| 458 |
+
wyczysc_formularz,
|
| 459 |
+
inputs=[],
|
| 460 |
+
outputs=[output_answer, input_text_form, output_sources, historia_formularza]
|
| 461 |
+
)
|
| 462 |
+
|
| 463 |
+
zacytuj_button.click(
|
| 464 |
+
dodaj_cytaty,
|
| 465 |
+
inputs=[output_answer, output_cytaty],
|
| 466 |
+
outputs=output_answer
|
| 467 |
+
).then(
|
| 468 |
+
zapisz_odpowiedz,
|
| 469 |
+
inputs=[output_answer, input_text_form, output_sources, session_dir],
|
| 470 |
+
outputs=None
|
| 471 |
+
).then(
|
| 472 |
+
lista_plikow,
|
| 473 |
+
inputs=session_dir,
|
| 474 |
+
outputs=download_files
|
| 475 |
+
)
|
| 476 |
+
|
| 477 |
+
gui.launch()
|