|
|
from fastapi import FastAPI, HTTPException |
|
|
from pydantic import BaseModel |
|
|
import os |
|
|
import logging |
|
|
import sys |
|
|
from dotenv import load_dotenv |
|
|
from .config import DATASET_CONFIGS |
|
|
from openai import OpenAI |
|
|
from openai.types.chat import ChatCompletionMessageParam |
|
|
import json |
|
|
|
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
logging.basicConfig( |
|
|
level=logging.INFO, |
|
|
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', |
|
|
handlers=[ |
|
|
logging.StreamHandler(sys.stdout) |
|
|
] |
|
|
) |
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
app = FastAPI(title="RAG Pipeline API", description="Multi-dataset RAG API", version="1.0.0") |
|
|
|
|
|
|
|
|
openrouter_api_key = os.getenv("OPENROUTER_API_KEY") |
|
|
if not openrouter_api_key: |
|
|
raise ValueError("OPENROUTER_API_KEY environment variable is not set") |
|
|
|
|
|
openrouter_client = OpenAI( |
|
|
base_url="https://openrouter.ai/api/v1", |
|
|
api_key=openrouter_api_key |
|
|
) |
|
|
|
|
|
|
|
|
MODEL_NAME = "z-ai/glm-4.5-air:free" |
|
|
|
|
|
|
|
|
pipelines = {} |
|
|
google_api_key = os.getenv("GOOGLE_API_KEY") |
|
|
|
|
|
logger.info(f"Starting RAG Pipeline API") |
|
|
logger.info(f"Port from env: {os.getenv('PORT', 'Not set - will use 8000')}") |
|
|
logger.info(f"Google API Key present: {'Yes' if google_api_key else 'No'}") |
|
|
logger.info(f"Available datasets: {list(DATASET_CONFIGS.keys())}") |
|
|
|
|
|
|
|
|
def rag_qa(question: str, dataset: str = "developer-portfolio") -> str: |
|
|
""" |
|
|
Get answers from the RAG pipeline for specific questions about the dataset. |
|
|
|
|
|
Args: |
|
|
question: The question to answer using the RAG pipeline |
|
|
dataset: The dataset to search in (default: developer-portfolio) |
|
|
|
|
|
Returns: |
|
|
Answer from the RAG pipeline |
|
|
""" |
|
|
try: |
|
|
|
|
|
if not pipelines: |
|
|
return "RAG Pipeline is running but datasets are still loading in the background. Please try again in a moment." |
|
|
|
|
|
|
|
|
if dataset not in pipelines: |
|
|
return f"Dataset '{dataset}' not available. Available datasets: {list(pipelines.keys())}" |
|
|
|
|
|
selected_pipeline = pipelines[dataset] |
|
|
answer = selected_pipeline.answer_question(question) |
|
|
return answer |
|
|
except Exception as e: |
|
|
return f"Error accessing RAG pipeline: {str(e)}" |
|
|
|
|
|
|
|
|
TOOLS = [ |
|
|
{ |
|
|
"type": "function", |
|
|
"function": { |
|
|
"name": "rag_qa", |
|
|
"description": "Get answers from the RAG pipeline for specific questions about datasets", |
|
|
"parameters": { |
|
|
"type": "object", |
|
|
"properties": { |
|
|
"question": { |
|
|
"type": "string", |
|
|
"description": "The question to answer using the RAG pipeline" |
|
|
}, |
|
|
"dataset": { |
|
|
"type": "string", |
|
|
"description": "The dataset to search in (default: developer-portfolio)", |
|
|
"default": "developer-portfolio" |
|
|
} |
|
|
}, |
|
|
"required": ["question"] |
|
|
} |
|
|
} |
|
|
} |
|
|
] |
|
|
|
|
|
|
|
|
logger.info("RAG Pipeline API is ready to serve requests - datasets will load in background") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Question(BaseModel): |
|
|
text: str |
|
|
dataset: str = "developer-portfolio" |
|
|
|
|
|
class ChatMessage(BaseModel): |
|
|
role: str |
|
|
content: str |
|
|
|
|
|
class ChatRequest(BaseModel): |
|
|
messages: list[ChatMessage] |
|
|
dataset: str = "developer-portfolio" |
|
|
|
|
|
@app.post("/chat") |
|
|
async def chat_with_ai(request: ChatRequest): |
|
|
""" |
|
|
Chat with the AI assistant. The AI will use the RAG pipeline when needed to answer questions about the datasets. |
|
|
""" |
|
|
try: |
|
|
|
|
|
messages: list[ChatCompletionMessageParam] = [ |
|
|
{"role": msg.role, "content": msg.content} |
|
|
for msg in request.messages |
|
|
] |
|
|
|
|
|
|
|
|
system_message: ChatCompletionMessageParam = { |
|
|
"role": "system", |
|
|
"content": "You are a helpful AI assistant. You have access to a RAG (Retrieval-Augmented Generation) pipeline that can answer questions about specific datasets. Use the rag_qa tool when users ask questions that would benefit from searching the dataset knowledge. For general conversation, respond normally. The available datasets are primarily focused on developer portfolio information, but can include other topics depending on what's loaded." |
|
|
} |
|
|
|
|
|
|
|
|
messages.insert(0, system_message) |
|
|
|
|
|
|
|
|
response = openrouter_client.chat.completions.create( |
|
|
model=MODEL_NAME, |
|
|
messages=messages, |
|
|
tools=TOOLS, |
|
|
tool_choice="auto" |
|
|
) |
|
|
|
|
|
message = response.choices[0].message |
|
|
finish_reason = response.choices[0].finish_reason |
|
|
|
|
|
|
|
|
if finish_reason == "tool_calls" and hasattr(message, 'tool_calls') and message.tool_calls: |
|
|
tool_results = [] |
|
|
|
|
|
|
|
|
for tool_call in message.tool_calls: |
|
|
if tool_call.function.name == "rag_qa": |
|
|
|
|
|
args = json.loads(tool_call.function.arguments) |
|
|
question = args.get("question") |
|
|
dataset = args.get("dataset", request.dataset) |
|
|
|
|
|
|
|
|
result = rag_qa(question, dataset) |
|
|
tool_results.append({ |
|
|
"tool_call_id": tool_call.id, |
|
|
"result": result |
|
|
}) |
|
|
|
|
|
|
|
|
assistant_message: ChatCompletionMessageParam = { |
|
|
"role": "assistant", |
|
|
"content": message.content or "", |
|
|
"tool_calls": [ |
|
|
{ |
|
|
"id": tc.id, |
|
|
"type": tc.type, |
|
|
"function": { |
|
|
"name": tc.function.name, |
|
|
"arguments": tc.function.arguments |
|
|
} |
|
|
} |
|
|
for tc in message.tool_calls |
|
|
] |
|
|
} |
|
|
messages.append(assistant_message) |
|
|
|
|
|
for tool_result in tool_results: |
|
|
tool_message: ChatCompletionMessageParam = { |
|
|
"role": "tool", |
|
|
"tool_call_id": tool_result["tool_call_id"], |
|
|
"content": tool_result["result"] |
|
|
} |
|
|
messages.append(tool_message) |
|
|
|
|
|
|
|
|
final_response = openrouter_client.chat.completions.create( |
|
|
model=MODEL_NAME, |
|
|
messages=messages |
|
|
) |
|
|
|
|
|
return { |
|
|
"response": final_response.choices[0].message.content, |
|
|
"tool_calls": [ |
|
|
{ |
|
|
"name": tc.function.name, |
|
|
"arguments": tc.function.arguments, |
|
|
"result": next(tr["result"] for tr in tool_results if tr["tool_call_id"] == tc.id) |
|
|
} |
|
|
for tc in message.tool_calls |
|
|
] if message.tool_calls else None |
|
|
} |
|
|
else: |
|
|
|
|
|
return { |
|
|
"response": message.content, |
|
|
"tool_calls": None |
|
|
} |
|
|
|
|
|
except Exception as e: |
|
|
raise HTTPException(status_code=500, detail=str(e)) |
|
|
|
|
|
@app.post("/answer") |
|
|
async def get_answer(question: Question): |
|
|
try: |
|
|
|
|
|
if not pipelines: |
|
|
return { |
|
|
"answer": "RAG Pipeline is running but datasets are still loading in the background. Please try again in a moment, or check /health for loading status.", |
|
|
"dataset": question.dataset, |
|
|
"status": "datasets_loading" |
|
|
} |
|
|
|
|
|
|
|
|
if question.dataset not in pipelines: |
|
|
raise HTTPException(status_code=400, detail=f"Dataset '{question.dataset}' not available. Available datasets: {list(pipelines.keys())}") |
|
|
|
|
|
selected_pipeline = pipelines[question.dataset] |
|
|
answer = selected_pipeline.answer_question(question.text) |
|
|
return {"answer": answer, "dataset": question.dataset} |
|
|
except Exception as e: |
|
|
raise HTTPException(status_code=500, detail=str(e)) |
|
|
|
|
|
@app.get("/datasets") |
|
|
async def list_datasets(): |
|
|
"""List all available datasets""" |
|
|
return {"datasets": list(pipelines.keys())} |
|
|
|
|
|
@app.get("/questions") |
|
|
async def list_questions(dataset: str = "developer-portfolio"): |
|
|
"""List all questions for a given dataset""" |
|
|
if dataset not in pipelines: |
|
|
raise HTTPException(status_code=400, detail=f"Dataset '{dataset}' not available. Available datasets: {list(pipelines.keys())}") |
|
|
|
|
|
selected_pipeline = pipelines[dataset] |
|
|
questions = [doc.meta['question'] for doc in selected_pipeline.documents if 'question' in doc.meta] |
|
|
return {"dataset": dataset, "questions": questions} |
|
|
|
|
|
async def load_datasets_background(): |
|
|
"""Load datasets in background after server starts""" |
|
|
global pipelines |
|
|
|
|
|
from .pipeline import RAGPipeline |
|
|
|
|
|
dataset_name = "developer-portfolio" |
|
|
try: |
|
|
logger.info(f"Loading dataset: {dataset_name}") |
|
|
pipeline = RAGPipeline.from_preset(preset_name=dataset_name) |
|
|
pipelines[dataset_name] = pipeline |
|
|
logger.info(f"Successfully loaded {dataset_name}") |
|
|
except Exception as e: |
|
|
logger.error(f"Failed to load {dataset_name}: {e}") |
|
|
logger.info(f"Background loading complete - {len(pipelines)} datasets loaded") |
|
|
|
|
|
@app.on_event("startup") |
|
|
async def startup_event(): |
|
|
logger.info("FastAPI application startup complete") |
|
|
logger.info(f"Server should be running on port: {os.getenv('PORT', '8000')}") |
|
|
|
|
|
|
|
|
import asyncio |
|
|
asyncio.create_task(load_datasets_background()) |
|
|
|
|
|
@app.on_event("shutdown") |
|
|
async def shutdown_event(): |
|
|
logger.info("FastAPI application shutting down") |
|
|
|
|
|
@app.get("/") |
|
|
async def root(): |
|
|
"""Root endpoint""" |
|
|
return {"status": "ok", "message": "RAG Pipeline API", "version": "1.0.0", "datasets": list(pipelines.keys())} |
|
|
|
|
|
@app.get("/health") |
|
|
async def health_check(): |
|
|
"""Health check endpoint""" |
|
|
logger.info("Health check called") |
|
|
loading_status = "complete" if "developer-portfolio" in pipelines else "loading" |
|
|
return { |
|
|
"status": "healthy", |
|
|
"datasets_loaded": len(pipelines), |
|
|
"total_datasets": 1, |
|
|
"loading_status": loading_status, |
|
|
"port": os.getenv('PORT', '8000') |
|
|
} |
|
|
|