from fastapi import FastAPI, HTTPException from pydantic import BaseModel import os import logging import sys from dotenv import load_dotenv from .config import DATASET_CONFIGS from openai import OpenAI from openai.types.chat import ChatCompletionMessageParam import json # Load environment variables load_dotenv() # Lazy imports to avoid blocking startup # from .pipeline import RAGPipeline # Will import when needed # import umap # Will import when needed for visualization # import plotly.express as px # Will import when needed for visualization # import plotly.graph_objects as go # Will import when needed for visualization # from plotly.subplots import make_subplots # Will import when needed for visualization # import numpy as np # Will import when needed for visualization # from sklearn.preprocessing import normalize # Will import when needed for visualization # import pandas as pd # Will import when needed for visualization # Configure logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', handlers=[ logging.StreamHandler(sys.stdout) ] ) logger = logging.getLogger(__name__) app = FastAPI(title="RAG Pipeline API", description="Multi-dataset RAG API", version="1.0.0") # Initialize OpenRouter client openrouter_api_key = os.getenv("OPENROUTER_API_KEY") if not openrouter_api_key: raise ValueError("OPENROUTER_API_KEY environment variable is not set") openrouter_client = OpenAI( base_url="https://openrouter.ai/api/v1", api_key=openrouter_api_key ) # Model configuration MODEL_NAME = "z-ai/glm-4.5-air:free" # Initialize pipelines for all datasets pipelines = {} google_api_key = os.getenv("GOOGLE_API_KEY") logger.info(f"Starting RAG Pipeline API") logger.info(f"Port from env: {os.getenv('PORT', 'Not set - will use 8000')}") logger.info(f"Google API Key present: {'Yes' if google_api_key else 'No'}") logger.info(f"Available datasets: {list(DATASET_CONFIGS.keys())}") # Define tools for the GLM model def rag_qa(question: str, dataset: str = "developer-portfolio") -> str: """ Get answers from the RAG pipeline for specific questions about the dataset. Args: question: The question to answer using the RAG pipeline dataset: The dataset to search in (default: developer-portfolio) Returns: Answer from the RAG pipeline """ try: # Check if pipelines are loaded if not pipelines: return "RAG Pipeline is running but datasets are still loading in the background. Please try again in a moment." # Select the appropriate pipeline based on dataset if dataset not in pipelines: return f"Dataset '{dataset}' not available. Available datasets: {list(pipelines.keys())}" selected_pipeline = pipelines[dataset] answer = selected_pipeline.answer_question(question) return answer except Exception as e: return f"Error accessing RAG pipeline: {str(e)}" # Tool definitions for GLM TOOLS = [ { "type": "function", "function": { "name": "rag_qa", "description": "Get answers from the RAG pipeline for specific questions about datasets", "parameters": { "type": "object", "properties": { "question": { "type": "string", "description": "The question to answer using the RAG pipeline" }, "dataset": { "type": "string", "description": "The dataset to search in (default: developer-portfolio)", "default": "developer-portfolio" } }, "required": ["question"] } } } ] # Don't load datasets during startup - do it asynchronously after server starts logger.info("RAG Pipeline API is ready to serve requests - datasets will load in background") # Visualization function disabled to speed up startup # def create_3d_visualization(pipeline): # ... (commented out for faster startup) class Question(BaseModel): text: str dataset: str = "developer-portfolio" # Default dataset class ChatMessage(BaseModel): role: str content: str class ChatRequest(BaseModel): messages: list[ChatMessage] dataset: str = "developer-portfolio" # Default dataset @app.post("/chat") async def chat_with_ai(request: ChatRequest): """ Chat with the AI assistant. The AI will use the RAG pipeline when needed to answer questions about the datasets. """ try: # Convert messages to OpenAI format with proper typing messages: list[ChatCompletionMessageParam] = [ {"role": msg.role, "content": msg.content} # type: ignore for msg in request.messages ] # Add system message to guide the AI system_message: ChatCompletionMessageParam = { "role": "system", "content": "You are a helpful AI assistant. You have access to a RAG (Retrieval-Augmented Generation) pipeline that can answer questions about specific datasets. Use the rag_qa tool when users ask questions that would benefit from searching the dataset knowledge. For general conversation, respond normally. The available datasets are primarily focused on developer portfolio information, but can include other topics depending on what's loaded." } # Insert system message at the beginning messages.insert(0, system_message) # Make the API call with tools response = openrouter_client.chat.completions.create( model=MODEL_NAME, messages=messages, tools=TOOLS, # type: ignore tool_choice="auto" ) message = response.choices[0].message finish_reason = response.choices[0].finish_reason # Handle tool calls if finish_reason == "tool_calls" and hasattr(message, 'tool_calls') and message.tool_calls: tool_results = [] # Execute tool calls for tool_call in message.tool_calls: if tool_call.function.name == "rag_qa": # Parse arguments args = json.loads(tool_call.function.arguments) question = args.get("question") dataset = args.get("dataset", request.dataset) # Call the rag_qa function result = rag_qa(question, dataset) tool_results.append({ "tool_call_id": tool_call.id, "result": result }) # Add tool results to conversation and get final response assistant_message: ChatCompletionMessageParam = { "role": "assistant", "content": message.content or "", "tool_calls": [ { "id": tc.id, "type": tc.type, "function": { "name": tc.function.name, "arguments": tc.function.arguments } } for tc in message.tool_calls ] } messages.append(assistant_message) for tool_result in tool_results: tool_message: ChatCompletionMessageParam = { "role": "tool", "tool_call_id": tool_result["tool_call_id"], "content": tool_result["result"] } messages.append(tool_message) # Get final response final_response = openrouter_client.chat.completions.create( model=MODEL_NAME, messages=messages ) return { "response": final_response.choices[0].message.content, "tool_calls": [ { "name": tc.function.name, "arguments": tc.function.arguments, "result": next(tr["result"] for tr in tool_results if tr["tool_call_id"] == tc.id) } for tc in message.tool_calls ] if message.tool_calls else None } else: # Direct response without tool calls return { "response": message.content, "tool_calls": None } except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.post("/answer") async def get_answer(question: Question): try: # Check if any pipelines are loaded if not pipelines: return { "answer": "RAG Pipeline is running but datasets are still loading in the background. Please try again in a moment, or check /health for loading status.", "dataset": question.dataset, "status": "datasets_loading" } # Select the appropriate pipeline based on dataset if question.dataset not in pipelines: raise HTTPException(status_code=400, detail=f"Dataset '{question.dataset}' not available. Available datasets: {list(pipelines.keys())}") selected_pipeline = pipelines[question.dataset] answer = selected_pipeline.answer_question(question.text) return {"answer": answer, "dataset": question.dataset} except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.get("/datasets") async def list_datasets(): """List all available datasets""" return {"datasets": list(pipelines.keys())} @app.get("/questions") async def list_questions(dataset: str = "developer-portfolio"): """List all questions for a given dataset""" if dataset not in pipelines: raise HTTPException(status_code=400, detail=f"Dataset '{dataset}' not available. Available datasets: {list(pipelines.keys())}") selected_pipeline = pipelines[dataset] questions = [doc.meta['question'] for doc in selected_pipeline.documents if 'question' in doc.meta] return {"dataset": dataset, "questions": questions} async def load_datasets_background(): """Load datasets in background after server starts""" global pipelines # Import RAGPipeline only when needed from .pipeline import RAGPipeline # Only load developer-portfolio to save memory dataset_name = "developer-portfolio" try: logger.info(f"Loading dataset: {dataset_name}") pipeline = RAGPipeline.from_preset(preset_name=dataset_name) pipelines[dataset_name] = pipeline logger.info(f"Successfully loaded {dataset_name}") except Exception as e: logger.error(f"Failed to load {dataset_name}: {e}") logger.info(f"Background loading complete - {len(pipelines)} datasets loaded") @app.on_event("startup") async def startup_event(): logger.info("FastAPI application startup complete") logger.info(f"Server should be running on port: {os.getenv('PORT', '8000')}") # Start loading datasets in background (non-blocking) import asyncio asyncio.create_task(load_datasets_background()) @app.on_event("shutdown") async def shutdown_event(): logger.info("FastAPI application shutting down") @app.get("/") async def root(): """Root endpoint""" return {"status": "ok", "message": "RAG Pipeline API", "version": "1.0.0", "datasets": list(pipelines.keys())} @app.get("/health") async def health_check(): """Health check endpoint""" logger.info("Health check called") loading_status = "complete" if "developer-portfolio" in pipelines else "loading" return { "status": "healthy", "datasets_loaded": len(pipelines), "total_datasets": 1, # Only loading developer-portfolio "loading_status": loading_status, "port": os.getenv('PORT', '8000') }