# RAG Pipeline with OpenRouter GLM Integration ## ๐ŸŽฏ **Project Overview** Successfully integrated OpenRouter's GLM-4.5-air model as the primary AI with RAG tool calling capabilities, replacing Google Gemini dependency. ## โœ… **Completed Features** ### **1. OpenRouter GLM Integration** - **Model**: `z-ai/glm-4.5-air:free` via OpenRouter API - **Intelligent Tool Calling**: GLM automatically decides when to use RAG vs general conversation - **Fallback Handling**: Graceful degradation when datasets are loading ### **2. New Chat Endpoint (`/chat`)** - **Multi-turn Conversations**: Full conversation history support - **Smart Tool Selection**: AI chooses RAG tool when relevant to user query - **Response Format**: Returns both AI response and tool execution details - **Error Handling**: Comprehensive error catching and user-friendly messages ### **3. RAG Tool Function** - **Function**: `rag_qa(question, dataset)` - **Dynamic Dataset Selection**: Supports multiple datasets (developer-portfolio, etc.) - **Background Loading**: Non-blocking dataset initialization - **Error Recovery**: Handles missing datasets and pipeline errors ### **4. Backward Compatibility** - **Legacy `/answer` endpoint**: Still fully functional - **Existing API contracts**: No breaking changes - **Dataset Support**: All existing datasets work unchanged ### **5. Infrastructure Improvements** - **Removed Google Gemini**: No more Google API key dependency - **Comprehensive .gitignore**: Python cache, IDE files, OS files - **Clean Architecture**: Separated concerns between AI and RAG components ## ๐Ÿงช **Testing Suite** ### **Test Coverage** (13 test cases, all passing) - **Chat Endpoint Tests**: Basic functionality, tool calling, error handling - **RAG Function Tests**: Loaded pipelines, missing datasets, exceptions - **Pipeline Tests**: Initialization, preset creation, question answering - **Tools Tests**: Configuration structure and parameters - **Legacy Tests**: Backward compatibility verification ### **Test Quality** - **Mocking Strategy**: Isolated unit tests without external dependencies - **Edge Cases**: Error scenarios and boundary conditions - **Integration Ready**: FastAPI TestClient for endpoint testing ## ๐Ÿš€ **Usage Examples** ### **General Chat** ```bash curl -X POST "http://localhost:8000/chat" \ -H "Content-Type: application/json" \ -d '{"messages": [{"role": "user", "content": "Hello! How are you?"}]}' ``` ### **RAG-Powered Questions** ```bash curl -X POST "http://localhost:8000/chat" \ -H "Content-Type: application/json" \ -d '{"messages": [{"role": "user", "content": "What is your experience as a Tech Lead?"}], "dataset": "developer-portfolio"}' ``` ### **Legacy Endpoint** ```bash curl -X POST "http://localhost:8000/answer" \ -H "Content-Type: application/json" \ -d '{"text": "What is your role?", "dataset": "developer-portfolio"}' ``` ## ๐Ÿ“Š **Architecture Benefits** ### **Intelligent AI Assistant** - **Context Awareness**: Knows when to use RAG vs general knowledge - **Tool Extensibility**: Easy to add new tools beyond RAG - **Conversation Memory**: Maintains context across multiple turns ### **Performance Optimizations** - **Background Loading**: Datasets load asynchronously after server start - **Memory Efficient**: Only loads required datasets - **Fast Response**: Direct AI responses without RAG when not needed ### **Developer Experience** - **Clean Dependencies**: No Google API key required - **Comprehensive Tests**: Full test coverage for confidence - **Clear Documentation**: Examples and usage patterns ## ๐Ÿ”ง **Technical Implementation** ### **Key Components** 1. **OpenRouter Client**: GLM-4.5-air model integration 2. **Tool Calling**: Dynamic function registration and execution 3. **RAG Pipeline**: Simplified to focus on retrieval and prompting 4. **FastAPI Application**: Modern async endpoints with proper error handling ### **Configuration** - **Environment Variables**: Minimal dependencies (only optional for legacy features) - **Dataset Configs**: Flexible configuration system for multiple datasets - **Model Settings**: Easy to update models and parameters ## ๐ŸŽ‰ **Summary** The application now provides a **smart conversational AI** that can: - โœ… Handle general chat conversations - โœ… Automatically use RAG when relevant - โœ… Support multiple datasets and tools - โœ… Maintain backward compatibility - โœ… Scale efficiently with background loading - โœ… Provide comprehensive test coverage **Ready for production deployment** with full confidence in functionality and reliability.