File size: 49,027 Bytes
d6b6802 14bc912 d6b6802 14bc912 d6b6802 14bc912 d6b6802 14bc912 d6b6802 14bc912 d6b6802 14bc912 d6b6802 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 |
# Advanced ML Sentiment Lab - Streamlit App
import warnings
warnings.filterwarnings("ignore")
import os
from pathlib import Path
from collections import Counter
from typing import List, Dict, Tuple, Optional
from urllib.parse import urlparse
import numpy as np
import pandas as pd
import streamlit as st
import plotly.express as px
import plotly.graph_objects as go
from sklearn.model_selection import train_test_split
from sklearn.metrics import (
f1_score,
accuracy_score,
precision_score,
recall_score,
average_precision_score,
roc_auc_score,
roc_curve,
precision_recall_curve,
confusion_matrix,
)
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.naive_bayes import MultinomialNB
from scipy.sparse import hstack
import joblib
# =========================================================
# App configuration
# =========================================================
st.set_page_config(
page_title="Advanced ML Sentiment Lab",
page_icon="🚀",
layout="wide",
initial_sidebar_state="expanded",
)
# Base paths (works locally and on Hugging Face Spaces)
BASE_DIR = Path(__file__).resolve().parent
MODELS_DIR = BASE_DIR / "models_sentiment_lab"
MODELS_DIR.mkdir(exist_ok=True)
# =========================================================
# Premium CSS (SaaS-style)
# =========================================================
APP_CSS = """
<style>
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700;800&display=swap');
.stApp {
background: radial-gradient(circle at top, #151a2f 0, #020617 45%, #020617 100%);
color: #e5e7eb;
font-family: 'Inter', sans-serif;
}
.main .block-container {
max-width: 1600px;
padding-top: 1.5rem;
}
/* Hero */
.hero-premium {
padding: 30px 34px;
border-radius: 24px;
background: linear-gradient(
135deg,
rgba(88, 80, 236, 0.35) 0%,
rgba(236, 72, 153, 0.22) 55%,
rgba(15, 23, 42, 0.98) 100%
);
border: 1px solid rgba(129, 140, 248, 0.55);
box-shadow:
0 20px 70px rgba(15, 23, 42, 0.9),
0 0 120px rgba(129, 140, 248, 0.4);
backdrop-filter: blur(16px);
margin-bottom: 26px;
}
.hero-title-pro {
font-size: 34px;
font-weight: 800;
letter-spacing: 0.02em;
background: linear-gradient(120deg, #e5e7eb 0%, #e0f2fe 30%, #f9a8d4 60%, #a5b4fc 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
margin-bottom: 10px;
}
.hero-subtitle-pro {
font-size: 15px;
color: #cbd5e1;
line-height: 1.7;
max-width: 840px;
}
.hero-badges {
margin-top: 16px;
display: flex;
flex-wrap: wrap;
gap: 8px;
}
/* Badges */
.badge-pill {
display: inline-flex;
align-items: center;
gap: 6px;
padding: 6px 14px;
border-radius: 999px;
font-size: 12px;
font-weight: 600;
background: radial-gradient(circle at top left, #6366f1, #8b5cf6);
color: #f9fafb;
box-shadow: 0 4px 16px rgba(129, 140, 248, 0.5);
}
.badge-soft {
background: linear-gradient(135deg, rgba(15, 23, 42, 0.96), rgba(55, 65, 81, 0.96));
border: 1px solid rgba(148, 163, 184, 0.6);
color: #cbd5e1;
box-shadow: none;
}
/* KPI cards */
.kpi-premium {
padding: 22px 20px;
border-radius: 20px;
background: radial-gradient(circle at top left, rgba(129, 140, 248, 0.16), rgba(15, 23, 42, 0.96));
border: 1px solid rgba(148, 163, 184, 0.5);
box-shadow: 0 14px 40px rgba(15, 23, 42, 0.9);
backdrop-filter: blur(12px);
transition: all 0.22s ease;
}
.kpi-premium:hover {
transform: translateY(-3px);
box-shadow: 0 20px 60px rgba(30, 64, 175, 0.7);
}
.kpi-icon {
font-size: 26px;
margin-bottom: 6px;
}
.kpi-label-pro {
font-size: 11px;
color: #94a3b8;
text-transform: uppercase;
letter-spacing: 0.12em;
font-weight: 600;
margin-bottom: 6px;
}
.kpi-value-pro {
font-size: 26px;
font-weight: 800;
background: linear-gradient(130deg, #e5e7eb 0%, #bfdbfe 40%, #c4b5fd 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}
.kpi-trend {
font-size: 11px;
color: #22c55e;
margin-top: 2px;
}
/* Section headers */
.section-header-pro {
font-size: 22px;
font-weight: 800;
color: #e5e7eb;
margin: 18px 0 6px 0;
padding-bottom: 8px;
border-bottom: 1px solid rgba(148, 163, 184, 0.5);
}
.section-desc-pro {
font-size: 13px;
color: #9ca3af;
margin-bottom: 16px;
}
/* Tabs */
.stTabs [data-baseweb="tab-list"] {
gap: 6px;
background: radial-gradient(circle at top, rgba(15, 23, 42, 0.96), rgba(15, 23, 42, 0.9));
padding: 8px;
border-radius: 999px;
}
.stTabs [data-baseweb="tab"] {
border-radius: 999px;
padding: 8px 20px;
background: transparent;
color: #9ca3af;
font-size: 13px;
font-weight: 600;
}
.stTabs [aria-selected="true"] {
background: linear-gradient(135deg, #6366f1 0%, #8b5cf6 50%, #ec4899 100%);
color: #f9fafb !important;
box-shadow: 0 4px 16px rgba(129, 140, 248, 0.6);
}
/* Model cards */
.model-card {
padding: 18px 16px;
border-radius: 16px;
background: radial-gradient(circle at top left, rgba(15, 23, 42, 0.97), rgba(15, 23, 42, 0.94));
border: 1px solid rgba(148, 163, 184, 0.5);
margin-bottom: 12px;
}
.model-name {
font-size: 16px;
font-weight: 700;
margin-bottom: 10px;
}
.model-metrics {
display: grid;
grid-template-columns: repeat(4, minmax(0, 1fr));
gap: 8px;
}
.metric-box {
padding: 6px 8px;
border-radius: 10px;
background: rgba(30, 64, 175, 0.35);
}
.metric-label {
font-size: 10px;
color: #cbd5e1;
text-transform: uppercase;
letter-spacing: 0.08em;
}
.metric-value {
font-size: 14px;
font-weight: 700;
}
/* Info box */
.info-box {
padding: 14px 16px;
border-radius: 14px;
background: rgba(37, 99, 235, 0.14);
border-left: 4px solid #3b82f6;
margin: 10px 0 16px 0;
}
.info-box-title {
font-size: 13px;
font-weight: 700;
color: #93c5fd;
margin-bottom: 4px;
}
.info-box-text {
font-size: 12px;
color: #e5e7eb;
line-height: 1.6;
}
/* Threshold card */
.threshold-card {
padding: 18px;
border-radius: 18px;
background: radial-gradient(circle at top left, rgba(15, 23, 42, 0.97), rgba(15, 23, 42, 0.94));
border: 1px solid rgba(148, 163, 184, 0.5);
box-shadow: 0 12px 36px rgba(15, 23, 42, 0.9);
}
/* Prediction card */
.prediction-card {
padding: 20px 18px;
border-radius: 18px;
background: radial-gradient(circle at top left, rgba(15, 23, 42, 0.97), rgba(15, 23, 42, 0.95));
border: 1px solid rgba(129, 140, 248, 0.6);
box-shadow: 0 12px 40px rgba(30, 64, 175, 0.8);
margin-top: 8px;
}
.prediction-label {
font-size: 12px;
color: #9ca3af;
text-transform: uppercase;
letter-spacing: 0.12em;
}
.prediction-result {
font-size: 26px;
font-weight: 800;
margin: 6px 0;
}
.prediction-positive {
color: #22c55e;
}
.prediction-negative {
color: #f97373;
}
.prediction-confidence {
font-size: 14px;
color: #e5e7eb;
}
/* Progress bar */
.progress-bar {
width: 100%;
height: 8px;
border-radius: 999px;
background: rgba(15, 23, 42, 0.8);
overflow: hidden;
margin-top: 6px;
}
.progress-fill {
height: 100%;
border-radius: 999px;
background: linear-gradient(90deg, #22c55e 0%, #a3e635 50%, #facc15 100%);
}
/* Animation */
@keyframes pulse {
0%, 100% { opacity: 1; }
50% { opacity: 0.45; }
}
.loading-pulse {
animation: pulse 1.6s ease-in-out infinite;
}
</style>
"""
st.markdown(APP_CSS, unsafe_allow_html=True)
# =========================================================
# Utility functions
# =========================================================
def basic_clean(s: str) -> str:
import re, html
if not isinstance(s, str):
s = str(s)
s = html.unescape(s).lower()
s = re.sub(r"<br\s*/?>", " ", s)
s = re.sub(r"http\S+|www\S+", " ", s)
s = re.sub(r"[^a-z0-9\s']", " ", s)
s = re.sub(r"\s+", " ", s).strip()
return s
def _is_url(path: str) -> bool:
try:
parsed = urlparse(path)
return parsed.scheme in ("http", "https")
except Exception:
return False
@st.cache_data(show_spinner=True)
def load_default_sentiment_dataset() -> pd.DataFrame:
"""
Try to automatically load IMDB Dataset from the repo or environment.
Priority:
1) SENTIMENT_DATA_PATH / DATA_PATH / CSV_PATH env vars (file path)
2) SENTIMENT_DATA_URL / DATA_URL / CSV_URL env vars (URL)
3) data/IMDB Dataset.csv in common locations relative to this file.
"""
# 1) Env path hints
env_path = None
for k in ("SENTIMENT_DATA_PATH", "DATA_PATH", "CSV_PATH"):
v = os.getenv(k)
if v:
env_path = v.strip()
break
env_url = None
for k in ("SENTIMENT_DATA_URL", "DATA_URL", "CSV_URL"):
v = os.getenv(k)
if v:
env_url = v.strip()
break
candidates: List[str] = []
if env_path:
candidates.append(env_path)
if env_url:
candidates.append(env_url)
rel_default = "data/IMDB Dataset.csv"
candidates.append(rel_default)
cwd = Path.cwd()
candidates.append(str(cwd / rel_default))
# When file is under src/data or repo/data
candidates.append(str(BASE_DIR / "data" / "IMDB Dataset.csv"))
candidates.append(str(BASE_DIR.parent / "data" / "IMDB Dataset.csv"))
# Directly next to the app
candidates.append(str(BASE_DIR / "IMDB Dataset.csv"))
candidates.append(str(BASE_DIR.parent / "IMDB Dataset.csv"))
tried: List[str] = []
last_err: Optional[Exception] = None
for src in candidates:
if not src or src in tried:
continue
tried.append(src)
try:
if _is_url(src):
df = pd.read_csv(src)
else:
p = Path(src)
if not p.exists():
continue
df = pd.read_csv(p)
if df is not None and not df.empty:
return df
except Exception as e:
last_err = e
continue
msg_lines = [
"Could not find dataset at 'data/IMDB Dataset.csv'. Tried:",
*[f"- {t}" for t in tried],
]
if last_err is not None:
msg_lines.append(f"Last error: {last_err}")
raise FileNotFoundError("\n".join(msg_lines))
@st.cache_data(show_spinner=False)
def clean_df(
df: pd.DataFrame,
text_col: str,
label_col: str,
pos_label_str: str,
neg_label_str: str,
) -> Tuple[pd.DataFrame, np.ndarray]:
out = df.copy()
out["text_raw"] = out[text_col].astype(str)
out["text_clean"] = out["text_raw"].map(basic_clean)
lab = out[label_col].astype(str)
y = np.where(lab == pos_label_str, 1, 0).astype(int)
return out, y
def build_advanced_features(
texts: List[str],
max_word_features: int,
use_char: bool,
char_max: int,
):
word_vec = TfidfVectorizer(
ngram_range=(1, 3),
max_features=max_word_features,
min_df=2,
max_df=0.95,
)
Xw = word_vec.fit_transform(texts)
vecs = [word_vec]
mats = [Xw]
if use_char:
char_vec = TfidfVectorizer(
analyzer="char",
ngram_range=(3, 6),
max_features=char_max,
min_df=2,
)
Xc = char_vec.fit_transform(texts)
vecs.append(char_vec)
mats.append(Xc)
X_all = hstack(mats) if len(mats) > 1 else mats[0]
return X_all, tuple(vecs)
def train_multiple_models(X_train, y_train, models_config: Dict) -> Dict:
models = {}
for name, cfg in models_config.items():
if not cfg.get("enabled", False):
continue
if name == "Logistic Regression":
model = LogisticRegression(
C=cfg["C"],
max_iter=1000,
solver="liblinear",
n_jobs=-1,
class_weight="balanced",
random_state=42,
)
elif name == "Random Forest":
model = RandomForestClassifier(
n_estimators=cfg["n_estimators"],
max_depth=cfg["max_depth"],
min_samples_split=cfg["min_samples_split"],
n_jobs=-1,
class_weight="balanced",
random_state=42,
)
elif name == "Gradient Boosting":
model = GradientBoostingClassifier(
n_estimators=cfg["n_estimators"],
learning_rate=cfg["learning_rate"],
max_depth=cfg["max_depth"],
random_state=42,
)
elif name == "Naive Bayes":
model = MultinomialNB(alpha=cfg["alpha"])
else:
continue
model.fit(X_train, y_train)
models[name] = model
return models
def evaluate_model(model, X_val, y_val) -> Dict:
y_pred = model.predict(X_val)
try:
y_proba = model.predict_proba(X_val)[:, 1]
except Exception:
scores = model.decision_function(X_val)
y_proba = (scores - scores.min()) / (scores.max() - scores.min() + 1e-9)
metrics = {
"accuracy": accuracy_score(y_val, y_pred),
"precision": precision_score(y_val, y_pred, zero_division=0),
"recall": recall_score(y_val, y_pred, zero_division=0),
"f1": f1_score(y_val, y_pred, zero_division=0),
"roc_auc": roc_auc_score(y_val, y_proba),
"pr_auc": average_precision_score(y_val, y_proba),
"y_pred": y_pred,
"y_proba": y_proba,
}
return metrics
def compute_threshold_view(
y_true: np.ndarray,
y_proba: np.ndarray,
threshold: float,
cost_fp: float,
cost_fn: float,
) -> Tuple[Dict, pd.DataFrame]:
y_pred_thr = (y_proba >= threshold).astype(int)
tn, fp, fn, tp = confusion_matrix(y_true, y_pred_thr).ravel()
metrics = {
"threshold": threshold,
"accuracy": accuracy_score(y_true, y_pred_thr),
"precision": precision_score(y_true, y_pred_thr, zero_division=0),
"recall": recall_score(y_true, y_pred_thr, zero_division=0),
"f1": f1_score(y_true, y_pred_thr, zero_division=0),
"specificity": tn / (tn + fp + 1e-9),
"fp": int(fp),
"fn": int(fn),
"tp": int(tp),
"tn": int(tn),
}
metrics["cost"] = metrics["fp"] * cost_fp + metrics["fn"] * cost_fn
grid = np.linspace(0.05, 0.95, 37)
rows = []
for t in grid:
y_pred_g = (y_proba >= t).astype(int)
tn_g, fp_g, fn_g, tp_g = confusion_matrix(y_true, y_pred_g).ravel()
f1_g = f1_score(y_true, y_pred_g, zero_division=0)
cost_g = fp_g * cost_fp + fn_g * cost_fn
rows.append(
{
"threshold": t,
"f1": f1_g,
"fp": fp_g,
"fn": fn_g,
"cost": cost_g,
}
)
df_curve = pd.DataFrame(rows)
return metrics, df_curve
# =========================================================
# Sidebar & dataset loading
# =========================================================
st.sidebar.markdown("### 🚀 Advanced ML Sentiment Lab")
st.sidebar.markdown("---")
st.sidebar.markdown("### Dataset source")
dataset_mode = st.sidebar.radio(
"How do you want to provide the dataset?",
options=["Auto (IMDB from repo)", "Upload CSV"],
index=0,
)
df: Optional[pd.DataFrame] = None
if dataset_mode == "Upload CSV":
upload = st.sidebar.file_uploader(
"Upload CSV dataset",
type=["csv"],
help="Small custom datasets work best here.",
)
if upload is not None:
try:
df = pd.read_csv(upload)
except Exception as e:
st.sidebar.error(f"Could not read uploaded CSV: {e}")
else:
try:
df = load_default_sentiment_dataset()
except Exception as e:
st.markdown(
"""
<div class="hero-premium">
<div class="hero-title-pro">Advanced ML Sentiment Lab</div>
<div class="hero-subtitle-pro">
Dataset could not be loaded automatically.
Make sure <code>data/IMDB Dataset.csv</code> exists in the repo
(or set SENTIMENT_DATA_PATH / DATA_PATH), or switch to "Upload CSV"
in the sidebar.
</div>
<div class="hero-badges">
<span class="badge-pill">Text + binary label</span>
<span class="badge-pill">TF-IDF word & character features</span>
<span class="badge-soft">Threshold tuning with business cost</span>
<span class="badge-soft">Artifacts saved under models_sentiment_lab/</span>
</div>
</div>
""",
unsafe_allow_html=True,
)
st.error(f"Dataset error: {e}")
st.stop()
if df is None or df.empty:
st.error("No dataset available. Provide a CSV via the sidebar.")
st.stop()
all_cols = list(df.columns)
st.sidebar.markdown("### Column mapping")
# Guess text column
default_text_idx = 0
for i, c in enumerate(all_cols):
if str(c).lower() in ["review", "text", "comment", "content", "message", "body"]:
default_text_idx = i
break
text_col = st.sidebar.selectbox("Text column", all_cols, index=default_text_idx)
label_candidates = [c for c in all_cols if c != text_col]
if not label_candidates:
st.error("Dataset must have at least 2 columns (text + label).")
st.stop()
default_label_idx = 0
for i, c in enumerate(label_candidates):
if str(c).lower() in ["sentiment", "label", "target", "y", "class"]:
default_label_idx = i
break
label_col = st.sidebar.selectbox("Label column", label_candidates, index=default_label_idx)
label_values = df[label_col].astype(str).dropna().value_counts().index.tolist()
if len(label_values) < 2:
st.error("Label column must have at least 2 distinct values.")
st.stop()
st.sidebar.markdown("### Label mapping")
pos_label_str = st.sidebar.selectbox("Positive class (1)", label_values, index=0)
neg_label_str = st.sidebar.selectbox(
"Negative class (0)", label_values, index=1 if len(label_values) > 1 else 0
)
# Training sample size (to keep it fast)
st.sidebar.markdown("### Training subset")
max_train_rows = st.sidebar.slider(
"Max rows used for training",
min_value=5000,
max_value=50000,
value=10000,
step=5000,
help="Training uses a stratified subset to keep runtime under control.",
)
# =========================================================
# Data processing & dataset KPIs
# =========================================================
dfc, y = clean_df(
df,
text_col=text_col,
label_col=label_col,
pos_label_str=pos_label_str,
neg_label_str=neg_label_str,
)
n_rows = len(dfc)
n_pos = int((y == 1).sum())
n_neg = int((y == 0).sum())
pos_ratio = n_pos / max(1, n_rows)
avg_len = dfc["text_clean"].str.len().mean()
sample_vocab = len(set(" ".join(dfc["text_clean"].head(5000)).split()))
# =========================================================
# Hero + KPI cards
# =========================================================
st.markdown(
f"""
<div class="hero-premium">
<div class="hero-title-pro">Advanced ML Sentiment Lab</div>
<div class="hero-subtitle-pro">
Production-style sentiment analytics on <b>{n_rows:,}</b> samples.
Configure TF-IDF features, train multiple models, tune the decision threshold
under custom business costs, and inspect model errors.
</div>
<div class="hero-badges">
<span class="badge-pill">Text column: {text_col}</span>
<span class="badge-pill">Label column: {label_col}</span>
<span class="badge-soft">Binary labels: {pos_label_str} / {neg_label_str}</span>
</div>
</div>
""",
unsafe_allow_html=True,
)
k1, k2, k3, k4 = st.columns(4)
with k1:
st.markdown(
f"""
<div class="kpi-premium">
<div class="kpi-icon">📊</div>
<div class="kpi-label-pro">Total samples</div>
<div class="kpi-value-pro">{n_rows:,}</div>
<div class="kpi-trend">Cleaned for modeling</div>
</div>
""",
unsafe_allow_html=True,
)
with k2:
st.markdown(
f"""
<div class="kpi-premium">
<div class="kpi-icon">✅</div>
<div class="kpi-label-pro">Positive share</div>
<div class="kpi-value-pro">{pos_ratio*100:.1f}%</div>
<div class="kpi-trend">{n_pos:,} positive / {n_neg:,} negative</div>
</div>
""",
unsafe_allow_html=True,
)
with k3:
st.markdown(
f"""
<div class="kpi-premium">
<div class="kpi-icon">📝</div>
<div class="kpi-label-pro">Avg text length</div>
<div class="kpi-value-pro">{avg_len:.0f}</div>
<div class="kpi-trend">characters per record</div>
</div>
""",
unsafe_allow_html=True,
)
with k4:
st.markdown(
f"""
<div class="kpi-premium">
<div class="kpi-icon">📚</div>
<div class="kpi-label-pro">Sample vocabulary</div>
<div class="kpi-value-pro">{sample_vocab:,}</div>
<div class="kpi-trend">unique tokens (first 5k rows)</div>
</div>
""",
unsafe_allow_html=True,
)
# =========================================================
# Tabs
# =========================================================
tab_eda, tab_train, tab_threshold, tab_compare, tab_errors, tab_deploy = st.tabs(
["EDA", "Train & Validation", "Threshold & Cost", "Compare Models", "Error Analysis", "Deploy"]
)
# =========================================================
# TAB 1: EDA
# =========================================================
with tab_eda:
st.markdown(
'<div class="section-header-pro">Exploratory data analysis</div>',
unsafe_allow_html=True,
)
st.markdown(
'<div class="section-desc-pro">Quick checks on class balance, text lengths, and token distribution.</div>',
unsafe_allow_html=True,
)
col1, col2 = st.columns(2)
with col1:
dfc["len_tokens"] = dfc["text_clean"].str.split().map(len)
fig_len = px.histogram(
dfc,
x="len_tokens",
nbins=50,
title="Token length distribution",
)
fig_len.update_layout(
plot_bgcolor="rgba(0,0,0,0)",
paper_bgcolor="rgba(0,0,0,0)",
font=dict(color="#e5e7eb"),
xaxis_title="Tokens per text",
yaxis_title="Count",
)
st.plotly_chart(fig_len, width="stretch")
dist_data = pd.DataFrame(
{
"Class": [neg_label_str, pos_label_str],
"Count": [n_neg, n_pos],
}
)
fig_class = px.pie(
dist_data,
values="Count",
names="Class",
title="Class distribution",
)
fig_class.update_layout(
plot_bgcolor="rgba(0,0,0,0)",
paper_bgcolor="rgba(0,0,0,0)",
font=dict(color="#e5e7eb"),
)
st.plotly_chart(fig_class, width="stretch")
with col2:
sample_size = min(10000, len(dfc))
cnt = Counter()
for t in dfc["text_clean"].sample(sample_size, random_state=42):
cnt.update(t.split())
top_tokens = pd.DataFrame(cnt.most_common(25), columns=["Token", "Frequency"])
fig_tokens = px.bar(
top_tokens,
x="Frequency",
y="Token",
orientation="h",
title="Top tokens (sample)",
)
fig_tokens.update_layout(
plot_bgcolor="rgba(0,0,0,0)",
paper_bgcolor="rgba(0,0,0,0)",
font=dict(color="#e5e7eb"),
showlegend=False,
yaxis={"categoryorder": "total ascending"},
)
st.plotly_chart(fig_tokens, width="stretch")
st.markdown("**Length statistics by class**")
st.dataframe(
dfc.groupby(label_col)["len_tokens"].describe().round(2),
width="stretch",
)
# =========================================================
# TAB 2: Train & Validation
# =========================================================
with tab_train:
st.markdown(
'<div class="section-header-pro">Multi-model training (single split)</div>',
unsafe_allow_html=True,
)
st.markdown(
'<div class="section-desc-pro">Configure TF-IDF, select models, then run a stratified train/validation split on a capped subset for fast turnaround.</div>',
unsafe_allow_html=True,
)
fe1, fe2, fe3 = st.columns(3)
with fe1:
max_word_features = st.slider(
"Max word features",
min_value=5000,
max_value=60000,
value=20000,
step=5000,
)
with fe2:
use_char = st.checkbox("Add character n-grams", value=True)
with fe3:
test_size = st.slider("Validation split (%)", 10, 40, 20, 5) / 100.0
st.markdown("---")
st.markdown("#### Model configuration")
models_config: Dict[str, Dict] = {}
mc1, mc2 = st.columns(2)
with mc1:
with st.expander("Logistic Regression", expanded=True):
en = st.checkbox("Enable Logistic Regression", value=True, key="lr_en_ultra")
C_val = st.slider(
"Regularization C", 0.1, 10.0, 2.0, 0.5, key="lr_C_ultra"
)
models_config["Logistic Regression"] = {"enabled": en, "C": C_val}
with st.expander("Random Forest"):
en = st.checkbox("Enable Random Forest", value=False, key="rf_en_ultra")
est = st.slider(
"n_estimators", 50, 300, 120, 50, key="rf_est_ultra"
)
depth = st.slider("max_depth", 5, 40, 18, 5, key="rf_depth_ultra")
split = st.slider(
"min_samples_split", 2, 20, 5, 1, key="rf_split_ultra"
)
models_config["Random Forest"] = {
"enabled": en,
"n_estimators": est,
"max_depth": depth,
"min_samples_split": split,
}
with mc2:
with st.expander("Gradient Boosting"):
en = st.checkbox("Enable Gradient Boosting", value=False, key="gb_en_ultra")
est = st.slider(
"n_estimators", 50, 300, 120, 50, key="gb_est_ultra"
)
lr = st.slider(
"learning_rate", 0.01, 0.3, 0.08, 0.01, key="gb_lr_ultra"
)
depth = st.slider("max_depth", 2, 8, 3, 1, key="gb_depth_ultra")
models_config["Gradient Boosting"] = {
"enabled": en,
"n_estimators": est,
"learning_rate": lr,
"max_depth": depth,
}
with st.expander("Naive Bayes"):
en = st.checkbox("Enable Naive Bayes", value=True, key="nb_en_ultra")
alpha = st.slider(
"alpha (smoothing)", 0.1, 3.0, 1.0, 0.1, key="nb_alpha_ultra"
)
models_config["Naive Bayes"] = {"enabled": en, "alpha": alpha}
st.markdown("---")
random_state = 42
if st.button("Train models", type="primary"):
enabled_models = [m for m, cfg in models_config.items() if cfg["enabled"]]
if not enabled_models:
st.warning("Enable at least one model before training.", icon="⚠️")
else:
progress = st.progress(0)
status = st.empty()
# Stratified subset for training
progress.progress(5)
status.markdown("Sampling rows for training (stratified)…")
n_total = len(dfc)
train_rows = min(max_train_rows, n_total)
indices = np.arange(n_total)
if train_rows < n_total:
sample_idx, _ = train_test_split(
indices,
train_size=train_rows,
stratify=y,
random_state=random_state,
)
else:
sample_idx = indices
df_train = dfc.iloc[sample_idx].copy()
y_sample = y[sample_idx]
status.markdown("Cleaning and vectorising text…")
progress.progress(20)
texts = df_train["text_clean"].tolist()
X_all, vecs = build_advanced_features(
texts,
max_word_features=max_word_features,
use_char=use_char,
char_max=20000,
)
status.markdown("Creating stratified train/validation split…")
progress.progress(40)
local_idx = np.arange(len(df_train))
train_loc, val_loc, y_train, y_val = train_test_split(
local_idx,
y_sample,
test_size=test_size,
stratify=y_sample,
random_state=random_state,
)
X_train = X_all[train_loc]
X_val = X_all[val_loc]
status.markdown("Training models…")
progress.progress(65)
trained_models = train_multiple_models(X_train, y_train, models_config)
status.markdown("Evaluating models on validation set…")
progress.progress(80)
all_results: Dict[str, Dict] = {}
for name, model in trained_models.items():
metrics = evaluate_model(model, X_val, y_val)
all_results[name] = {"model": model, "metrics": metrics}
status.markdown("Saving artifacts…")
progress.progress(92)
val_idx_global = df_train.index[val_loc]
joblib.dump(vecs, MODELS_DIR / "vectorizers.joblib")
joblib.dump(trained_models, MODELS_DIR / "models.joblib")
joblib.dump(all_results, MODELS_DIR / "results.joblib")
joblib.dump(
{
"pos_label": pos_label_str,
"neg_label": neg_label_str,
"val_idx": val_idx_global,
"y_val": y_val,
"text_col": text_col,
"label_col": label_col,
},
MODELS_DIR / "metadata.joblib",
)
progress.progress(100)
status.markdown("Training complete.")
st.success(f"Trained {len(trained_models)} model(s) on {len(df_train):,} rows.")
rows = []
for name, res in all_results.items():
m = res["metrics"]
rows.append(
{
"Model": name,
"Accuracy": f"{m['accuracy']:.4f}",
"Precision": f"{m['precision']:.4f}",
"Recall": f"{m['recall']:.4f}",
"F1 (validation)": f"{m['f1']:.4f}",
"ROC-AUC": f"{m['roc_auc']:.4f}",
"PR-AUC": f"{m['pr_auc']:.4f}",
}
)
res_df = pd.DataFrame(rows)
st.markdown("#### Training summary")
st.dataframe(res_df, width="stretch", hide_index=True)
# =========================================================
# TAB 3: Threshold & Cost
# =========================================================
with tab_threshold:
st.markdown(
'<div class="section-header-pro">Threshold tuning and business cost</div>',
unsafe_allow_html=True,
)
st.markdown(
'<div class="section-desc-pro">Pick a model, move the decision threshold, and inspect how metrics and expected cost change.</div>',
unsafe_allow_html=True,
)
results_path = MODELS_DIR / "results.joblib"
meta_path = MODELS_DIR / "metadata.joblib"
if not results_path.exists() or not meta_path.exists():
st.info("Train models in the previous tab to unlock threshold tuning.")
else:
all_results = joblib.load(results_path)
metadata = joblib.load(meta_path)
y_val = metadata["y_val"]
best_name = max(
all_results.keys(),
key=lambda n: all_results[n]["metrics"]["f1"],
)
model_name = st.selectbox(
"Model to analyse",
options=list(all_results.keys()),
index=list(all_results.keys()).index(best_name),
)
metrics_base = all_results[model_name]["metrics"]
y_proba = metrics_base["y_proba"]
col_thr, col_cost = st.columns([1.2, 1])
with col_thr:
threshold = st.slider(
"Decision threshold for positive class",
min_value=0.05,
max_value=0.95,
value=0.5,
step=0.01,
)
with col_cost:
cost_fp = st.number_input(
"Cost of a false positive (FP)", min_value=0.0, value=1.0, step=0.5
)
cost_fn = st.number_input(
"Cost of a false negative (FN)", min_value=0.0, value=5.0, step=0.5
)
thr_metrics, df_curve = compute_threshold_view(
y_true=y_val,
y_proba=y_proba,
threshold=threshold,
cost_fp=cost_fp,
cost_fn=cost_fn,
)
c1, c2, c3, c4 = st.columns(4)
with c1:
st.metric("Accuracy", f"{thr_metrics['accuracy']:.4f}")
with c2:
st.metric("Precision", f"{thr_metrics['precision']:.4f}")
with c3:
st.metric("Recall", f"{thr_metrics['recall']:.4f}")
with c4:
st.metric("F1", f"{thr_metrics['f1']:.4f}")
c5, c6, c7, c8 = st.columns(4)
with c5:
st.metric("Specificity", f"{thr_metrics['specificity']:.4f}")
with c6:
st.metric("FP", thr_metrics["fp"])
with c7:
st.metric("FN", thr_metrics["fn"])
with c8:
st.metric("Total cost", f"{thr_metrics['cost']:.2f}")
st.markdown("##### F1 over threshold")
fig_thr = px.line(
df_curve,
x="threshold",
y="f1",
title="F1 vs threshold",
)
fig_thr.update_layout(
plot_bgcolor="rgba(0,0,0,0)",
paper_bgcolor="rgba(0,0,0,0)",
font=dict(color="#e5e7eb"),
)
st.plotly_chart(fig_thr, width="stretch")
fig_cost = px.line(
df_curve,
x="threshold",
y="cost",
title=f"Estimated cost (FP cost={cost_fp}, FN cost={cost_fn})",
)
fig_cost.update_layout(
plot_bgcolor="rgba(0,0,0,0)",
paper_bgcolor="rgba(0,0,0,0)",
font=dict(color="#e5e7eb"),
)
st.plotly_chart(fig_cost, width="stretch")
# =========================================================
# TAB 4: Compare models
# =========================================================
with tab_compare:
st.markdown(
'<div class="section-header-pro">Model comparison</div>',
unsafe_allow_html=True,
)
st.markdown(
'<div class="section-desc-pro">Side-by-side comparison of metrics, ROC / PR curves, and confusion matrices.</div>',
unsafe_allow_html=True,
)
results_path = MODELS_DIR / "results.joblib"
meta_path = MODELS_DIR / "metadata.joblib"
if not results_path.exists() or not meta_path.exists():
st.info("Train models first to unlock comparison.")
else:
all_results = joblib.load(results_path)
metadata = joblib.load(meta_path)
y_val = metadata["y_val"]
st.markdown("#### Model cards")
cols = st.columns(len(all_results))
for (name, res), col in zip(all_results.items(), cols):
m = res["metrics"]
with col:
st.markdown(
f"""
<div class="model-card">
<div class="model-name">{name}</div>
<div class="model-metrics">
<div class="metric-box">
<div class="metric-label">ACC</div>
<div class="metric-value">{m['accuracy']:.3f}</div>
</div>
<div class="metric-box">
<div class="metric-label">F1</div>
<div class="metric-value">{m['f1']:.3f}</div>
</div>
<div class="metric-box">
<div class="metric-label">ROC</div>
<div class="metric-value">{m['roc_auc']:.3f}</div>
</div>
<div class="metric-box">
<div class="metric-label">PR</div>
<div class="metric-value">{m['pr_auc']:.3f}</div>
</div>
</div>
</div>
""",
unsafe_allow_html=True,
)
r1, r2 = st.columns(2)
with r1:
st.markdown("##### ROC curves")
fig_roc = go.Figure()
for name, res in all_results.items():
fpr, tpr, _ = roc_curve(y_val, res["metrics"]["y_proba"])
auc_score = res["metrics"]["roc_auc"]
fig_roc.add_trace(
go.Scatter(
x=fpr,
y=tpr,
mode="lines",
name=f"{name} (AUC={auc_score:.3f})",
)
)
fig_roc.add_trace(
go.Scatter(
x=[0, 1],
y=[0, 1],
mode="lines",
name="Random",
line=dict(dash="dash", color="gray"),
)
)
fig_roc.update_layout(
xaxis_title="False positive rate",
yaxis_title="True positive rate",
plot_bgcolor="rgba(0,0,0,0)",
paper_bgcolor="rgba(0,0,0,0)",
font=dict(color="#e5e7eb"),
)
st.plotly_chart(fig_roc, width="stretch")
with r2:
st.markdown("##### Precision-Recall curves")
fig_pr = go.Figure()
for name, res in all_results.items():
prec, rec, _ = precision_recall_curve(
y_val, res["metrics"]["y_proba"]
)
pr_auc = res["metrics"]["pr_auc"]
fig_pr.add_trace(
go.Scatter(
x=rec,
y=prec,
mode="lines",
name=f"{name} (AUC={pr_auc:.3f})",
fill="tonexty",
)
)
fig_pr.update_layout(
xaxis_title="Recall",
yaxis_title="Precision",
plot_bgcolor="rgba(0,0,0,0)",
paper_bgcolor="rgba(0,0,0,0)",
font=dict(color="#e5e7eb"),
)
st.plotly_chart(fig_pr, width="stretch")
st.markdown("##### Confusion matrices (validation set)")
cm_cols = st.columns(len(all_results))
for (name, res), col in zip(all_results.items(), cm_cols):
m = res["metrics"]
cm = confusion_matrix(y_val, m["y_pred"])
fig_cm = px.imshow(
cm,
labels=dict(x="Predicted", y="Actual", color="Count"),
x=[metadata["neg_label"], metadata["pos_label"]],
y=[metadata["neg_label"], metadata["pos_label"]],
text_auto=True,
title=name,
)
fig_cm.update_layout(
plot_bgcolor="rgba(0,0,0,0)",
paper_bgcolor="rgba(0,0,0,0)",
font=dict(color="#e5e7eb"),
)
with col:
st.plotly_chart(fig_cm, width="stretch")
# =========================================================
# TAB 5: Error analysis
# =========================================================
with tab_errors:
st.markdown(
'<div class="section-header-pro">Error analysis</div>',
unsafe_allow_html=True,
)
st.markdown(
'<div class="section-desc-pro">Browse misclassified texts to see where the model struggles and how confident it was.</div>',
unsafe_allow_html=True,
)
results_path = MODELS_DIR / "results.joblib"
meta_path = MODELS_DIR / "metadata.joblib"
if not results_path.exists() or not meta_path.exists():
st.info("Train models first to unlock error analysis.")
else:
all_results = joblib.load(results_path)
metadata = joblib.load(meta_path)
y_val = metadata["y_val"]
val_idx = metadata["val_idx"]
best_name = max(
all_results.keys(),
key=lambda n: all_results[n]["metrics"]["f1"],
)
model_name = st.selectbox(
"Model to inspect",
options=list(all_results.keys()),
index=list(all_results.keys()).index(best_name),
)
m = all_results[model_name]["metrics"]
y_pred = m["y_pred"]
y_proba = m["y_proba"]
# Use .loc because val_idx is based on original index
val_df = dfc.loc[val_idx].copy()
val_df["true_label"] = np.where(
y_val == 1, metadata["pos_label"], metadata["neg_label"]
)
val_df["pred_label"] = np.where(
y_pred == 1, metadata["pos_label"], metadata["neg_label"]
)
val_df["proba_pos"] = y_proba
val_df["correct"] = (y_val == y_pred)
val_df["error_type"] = np.where(
val_df["correct"],
"Correct",
np.where(y_val == 1, "False negative", "False positive"),
)
col_f1, col_f2 = st.columns([1, 1])
with col_f1:
only_errors = st.checkbox("Show only misclassified samples", value=True)
with col_f2:
sort_mode = st.selectbox(
"Sort by",
options=[
"Most confident errors",
"Least confident predictions",
"Random",
],
)
df_view = val_df.copy()
if only_errors:
df_view = df_view[~df_view["correct"]]
if sort_mode == "Most confident errors":
df_view["conf"] = np.abs(df_view["proba_pos"] - 0.5)
df_view = df_view.sort_values("conf", ascending=False)
elif sort_mode == "Least confident predictions":
df_view["conf"] = np.abs(df_view["proba_pos"] - 0.5)
df_view = df_view.sort_values("conf", ascending=True)
else:
df_view = df_view.sample(frac=1, random_state=42)
top_n = st.slider("Rows to show", 10, 200, 50, 10)
cols_show = [
"text_raw",
"true_label",
"pred_label",
"proba_pos",
"error_type",
]
st.dataframe(
df_view[cols_show].head(top_n),
width="stretch",
)
# =========================================================
# TAB 6: Deploy
# =========================================================
with tab_deploy:
st.markdown(
'<div class="section-header-pro">Deployment & interactive prediction</div>',
unsafe_allow_html=True,
)
st.markdown(
'<div class="section-desc-pro">Pick the best model, test arbitrary texts, and reuse the same logic in an API or batch job.</div>',
unsafe_allow_html=True,
)
models_path = MODELS_DIR / "models.joblib"
vecs_path = MODELS_DIR / "vectorizers.joblib"
results_path = MODELS_DIR / "results.joblib"
meta_path = MODELS_DIR / "metadata.joblib"
if not (
models_path.exists()
and vecs_path.exists()
and results_path.exists()
and meta_path.exists()
):
st.info("Train models first to enable deployment.")
else:
models = joblib.load(models_path)
vecs = joblib.load(vecs_path)
all_results = joblib.load(results_path)
metadata = joblib.load(meta_path)
best_name = max(
all_results.keys(),
key=lambda n: all_results[n]["metrics"]["f1"],
)
model_choice = st.selectbox(
"Model for deployment",
options=["Best (by F1)"] + list(models.keys()),
index=0,
)
if model_choice == "Best (by F1)":
deploy_name = best_name
st.info(f"Using {best_name} (best F1 on validation).")
else:
deploy_name = model_choice
model = models[deploy_name]
word_vec = vecs[0]
char_vec = vecs[1] if len(vecs) > 1 else None
if "deploy_text" not in st.session_state:
st.session_state["deploy_text"] = ""
c_in, c_out = st.columns([1.4, 1.1])
with c_in:
st.markdown("#### Input text")
example_col1, example_col2, example_col3 = st.columns(3)
with example_col1:
if st.button("Positive example"):
st.session_state["deploy_text"] = (
"Absolutely loved this. Great quality, fast delivery, and "
"I would happily buy again."
)
with example_col2:
if st.button("Mixed example"):
st.session_state["deploy_text"] = (
"Some parts were decent, but overall it felt overpriced and a bit disappointing."
)
with example_col3:
if st.button("Negative example"):
st.session_state["deploy_text"] = (
"Terrible experience. Support was unhelpful and the product broke quickly."
)
text_input = st.text_area(
"Write or paste any text",
height=160,
value=st.session_state["deploy_text"],
)
predict_btn = st.button("Predict sentiment")
with c_out:
if predict_btn and text_input.strip():
clean_text = basic_clean(text_input)
Xw = word_vec.transform([clean_text])
if char_vec is not None:
Xc = char_vec.transform([clean_text])
X_test = hstack([Xw, Xc])
else:
X_test = Xw
try:
proba = float(model.predict_proba(X_test)[0, 1])
except Exception:
scores = model.decision_function(X_test)
proba = float(
(scores - scores.min()) / (scores.max() - scores.min() + 1e-9)
)
label_int = int(proba >= 0.5)
label_str = (
metadata["pos_label"] if label_int == 1 else metadata["neg_label"]
)
conf_pct = proba * 100.0 if label_int == 1 else (1.0 - proba) * 100.0
st.markdown(
"""
<div class="prediction-card">
<div class="prediction-label">Predicted sentiment</div>
""",
unsafe_allow_html=True,
)
cls = "prediction-positive" if label_int == 1 else "prediction-negative"
st.markdown(
f'<div class="prediction-result {cls}">{label_str}</div>',
unsafe_allow_html=True,
)
st.markdown(
f'<div class="prediction-confidence">{conf_pct:.1f}% confidence</div>',
unsafe_allow_html=True,
)
width_pct = int(conf_pct)
st.markdown(
f"""
<div class="progress-bar">
<div class="progress-fill" style="width:{width_pct}%;"></div>
</div>
</div>
""",
unsafe_allow_html=True,
)
|