Spaces:
Runtime error
Runtime error
Commit
·
27f94c6
1
Parent(s):
b89ed62
Upload optimizing transformers demo
Browse files- app.py +74 -0
- config.json +3 -0
app.py
ADDED
|
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import time
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import torch
|
| 5 |
+
from huggingface_hub import hf_hub_download
|
| 6 |
+
from onnxruntime import InferenceSession
|
| 7 |
+
from transformers import AutoModelForQuestionAnswering, AutoTokenizer
|
| 8 |
+
|
| 9 |
+
models = {
|
| 10 |
+
"Base model": "bert-large-uncased-whole-word-masking-finetuned-squad",
|
| 11 |
+
"Prunned model": "madlag/bert-large-uncased-wwm-squadv2-x2.63-f82.6-d16-hybrid-v1",
|
| 12 |
+
"Prunned ONNX Optimized FP16": "tryolabs/bert-large-uncased-wwm-squadv2-optimized-f16",
|
| 13 |
+
}
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def run_ort_inference(model_name, inputs):
|
| 17 |
+
model_path = hf_hub_download(repo_id=models[model_name], filename="model.onnx")
|
| 18 |
+
sess = InferenceSession(model_path, providers=["CPUExecutionProvider"])
|
| 19 |
+
start_time = time.time()
|
| 20 |
+
output = sess.run(None, input_feed=inputs)
|
| 21 |
+
end_time = time.time()
|
| 22 |
+
return (output[0], output[1]), (end_time - start_time)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def run_normal_hf(model_name, inputs):
|
| 26 |
+
start_time = time.time()
|
| 27 |
+
model = AutoModelForQuestionAnswering.from_pretrained(models[model_name])
|
| 28 |
+
end_time = time.time()
|
| 29 |
+
return model(**inputs).values(), (end_time - start_time)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def inference(model_name, context, question):
|
| 33 |
+
tokenizer = AutoTokenizer.from_pretrained(models[model_name])
|
| 34 |
+
if model_name == "Prunned ONNX Optimized FP16":
|
| 35 |
+
inputs = dict(tokenizer(question, context, return_tensors="np"))
|
| 36 |
+
output, inference_time = run_ort_inference(model_name, inputs)
|
| 37 |
+
answer_start_scores, answer_end_scores = torch.tensor(output[0]), torch.tensor(
|
| 38 |
+
output[1]
|
| 39 |
+
)
|
| 40 |
+
else:
|
| 41 |
+
inputs = tokenizer(question, context, return_tensors="pt")
|
| 42 |
+
output, inference_time = run_normal_hf(model_name, inputs)
|
| 43 |
+
answer_start_scores, answer_end_scores = output
|
| 44 |
+
|
| 45 |
+
input_ids = inputs["input_ids"].tolist()[0]
|
| 46 |
+
answer_start = torch.argmax(answer_start_scores)
|
| 47 |
+
answer_end = torch.argmax(answer_end_scores) + 1
|
| 48 |
+
answer = tokenizer.convert_tokens_to_string(
|
| 49 |
+
tokenizer.convert_ids_to_tokens(input_ids[answer_start:answer_end])
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
return answer, f"{inference_time:.4f}s"
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
model_field = gr.Dropdown(
|
| 56 |
+
choices=["Base model", "Prunned model", "Prunned ONNX Optimized FP16"],
|
| 57 |
+
value="Prunned ONNX Optimized FP16",
|
| 58 |
+
label="Model",
|
| 59 |
+
)
|
| 60 |
+
input_text_field = gr.Textbox(placeholder="Enter the text here", label="Text")
|
| 61 |
+
input_question_field = gr.Text(placeholder="Enter the question here", label="Question")
|
| 62 |
+
|
| 63 |
+
output_model = gr.Text(label="Model output")
|
| 64 |
+
output_inference_time = gr.Text(label="Inference time in seconds")
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
demo = gr.Interface(
|
| 68 |
+
inference,
|
| 69 |
+
title="Optimizing Transformers - Question Answering Demo",
|
| 70 |
+
inputs=[model_field, input_text_field, input_question_field],
|
| 71 |
+
outputs=[output_model, output_inference_time],
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
demo.launch()
|
config.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"transformers_version": "4.5.1"
|
| 3 |
+
}
|