File size: 9,396 Bytes
cfc8e23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import logging
import re
from pathlib import Path

from app.models.document import Document

logger = logging.getLogger(__name__)


class DocumentProcessor:
    """Process and chunk documents for indexing"""

    def __init__(self, chunk_size: int = 1000, chunk_overlap: int = 200):
        logger.debug(
            f"Initializing DocumentProcessor with chunk_size={chunk_size}, chunk_overlap={chunk_overlap}"
        )
        self.chunk_size = chunk_size
        self.chunk_overlap = chunk_overlap
        logger.debug("DocumentProcessor initialized successfully")

    def load_markdown_files(self, directory: str) -> list[Document]:
        """Load all markdown files from a directory"""
        logger.info(f"Loading markdown files from directory: {directory}")
        documents = []
        markdown_path = Path(directory)

        if not markdown_path.exists():
            logger.error(f"Directory {directory} does not exist")
            raise ValueError(f"Directory {directory} does not exist")

        logger.debug(f"Searching for markdown files in {markdown_path}")
        md_files = list(markdown_path.glob("**/*.md"))

        if not md_files:
            logger.error(f"No markdown files found in {directory}")
            raise ValueError(f"No markdown files found in {directory}")

        logger.info(f"Found {len(md_files)} markdown files to process")

        successful_loads = 0
        failed_loads = 0

        for i, md_file in enumerate(md_files):
            if i > 0 and i % 100 == 0:
                logger.debug(f"Processing file {i}/{len(md_files)}: {md_file.name}")

            try:
                logger.debug(f"Reading file: {md_file}")
                with open(md_file, encoding="utf-8") as f:
                    content = f.read()

                logger.debug(
                    f"File {md_file.name} loaded, size: {len(content)} characters"
                )

                doc = Document(
                    content=content,
                    metadata={
                        "source": str(md_file),
                        "filename": md_file.name,
                        "file_size": len(content),
                        "file_path": str(md_file.relative_to(markdown_path)),
                    },
                )
                documents.append(doc)
                successful_loads += 1
                logger.debug(f"Document created for {md_file.name}")

            except Exception as e:
                logger.error(f"Error reading {md_file}: {e}")
                failed_loads += 1
                continue

        logger.info(
            f"Successfully loaded {len(documents)} documents (successful: {successful_loads}, failed: {failed_loads})"
        )
        return documents

    def create_chunks(self, documents: list[Document]) -> list[Document]:
        """Create chunks from documents with overlap"""
        logger.info(f"Creating chunks from {len(documents)} documents")
        all_chunks = []

        for i, doc in enumerate(documents):
            if i > 0 and i % 50 == 0:
                logger.debug(f"Chunking document {i}/{len(documents)}")

            logger.debug(
                f"Chunking document: {doc.metadata.get('filename', 'unknown')}"
            )
            chunks = self._chunk_document(doc)
            logger.debug(
                f"Generated {len(chunks)} chunks for document {doc.metadata.get('filename', 'unknown')}"
            )
            all_chunks.extend(chunks)

        logger.info(f"Created {len(all_chunks)} chunks from {len(documents)} documents")
        return all_chunks

    def _chunk_document(self, document: Document) -> list[Document]:
        """Chunk a single document with markdown awareness"""
        logger.debug(
            f"Starting to chunk document with {len(document.content)} characters"
        )
        text = document.content
        chunks = []

        logger.debug("Splitting document by headers")
        sections = self._split_by_headers(text)
        logger.debug(f"Split into {len(sections)} sections")

        for i, section in enumerate(sections):
            logger.debug(
                f"Processing section {i + 1}/{len(sections)}, length: {len(section)}"
            )

            if len(section) <= self.chunk_size:
                logger.debug(f"Section {i + 1} fits in single chunk")
                chunks.append(section)
            else:
                logger.debug(f"Section {i + 1} too large, splitting into sub-chunks")
                sub_chunks = self._split_large_section(section)
                logger.debug(f"Section {i + 1} split into {len(sub_chunks)} sub-chunks")
                chunks.extend(sub_chunks)

        logger.debug(f"Total chunks created: {len(chunks)}")

        chunk_documents = []
        for i, chunk_text in enumerate(chunks):
            if chunk_text.strip():
                chunk_doc = Document(
                    content=chunk_text,
                    metadata={
                        **document.metadata,
                        "chunk_id": i,
                        "chunk_length": len(chunk_text),
                        "total_chunks": len(chunks),
                    },
                )
                chunk_documents.append(chunk_doc)
                logger.debug(
                    f"Created chunk {i + 1}/{len(chunks)}, length: {len(chunk_text)}"
                )
            else:
                logger.debug(f"Skipping empty chunk {i + 1}")

        logger.debug(f"Generated {len(chunk_documents)} non-empty chunk documents")
        return chunk_documents

    def _split_by_headers(self, text: str) -> list[str]:
        """Split text by markdown headers while preserving structure"""
        logger.debug(f"Splitting text by headers, input length: {len(text)}")
        header_pattern = r"\n(?=#{1,6}\s+)"
        sections = re.split(header_pattern, text)
        logger.debug(f"Initial split resulted in {len(sections)} raw sections")

        cleaned_sections = []
        current_section = ""

        for i, section in enumerate(sections):
            if not section.strip():
                logger.debug(f"Skipping empty section {i + 1}")
                continue

            section_length = len(section)
            current_length = len(current_section)
            combined_length = current_length + section_length

            logger.debug(
                f"Processing section {i + 1}: current={current_length}, section={section_length}, combined={combined_length}"
            )

            if current_section and combined_length > self.chunk_size:
                logger.debug(
                    f"Section combination would exceed chunk_size ({self.chunk_size}), finalizing current section"
                )
                cleaned_sections.append(current_section.strip())
                current_section = section
            else:
                current_section += "\n" + section if current_section else section
                logger.debug(
                    f"Added section to current, new length: {len(current_section)}"
                )

        if current_section:
            cleaned_sections.append(current_section.strip())
            logger.debug("Added final section")

        logger.debug(
            f"Header splitting completed: {len(cleaned_sections)} final sections"
        )
        return cleaned_sections

    def _split_large_section(self, text: str) -> list[str]:
        """Split large sections into smaller chunks with overlap"""
        logger.debug(f"Splitting large section of {len(text)} characters")
        chunks = []
        words = text.split()
        logger.debug(f"Section contains {len(words)} words")

        current_chunk = []
        current_size = 0
        overlap_words = self.chunk_overlap // 10

        logger.debug(f"Using overlap of {overlap_words} words")

        for i, word in enumerate(words):
            word_size = len(word) + 1

            if current_size + word_size > self.chunk_size and current_chunk:
                chunk_text = " ".join(current_chunk)
                chunks.append(chunk_text)
                logger.debug(
                    f"Created chunk {len(chunks)}: {len(chunk_text)} characters, {len(current_chunk)} words"
                )

                overlap_size = min(len(current_chunk), overlap_words)
                if overlap_size > 0:
                    current_chunk = current_chunk[-overlap_size:]
                    current_size = sum(len(w) + 1 for w in current_chunk)
                    logger.debug(
                        f"Applied overlap: kept {overlap_size} words, new size: {current_size}"
                    )
                else:
                    current_chunk = []
                    current_size = 0
                    logger.debug("No overlap applied")

            current_chunk.append(word)
            current_size += word_size

            if i > 0 and i % 1000 == 0:
                logger.debug(f"Processed {i}/{len(words)} words")

        if current_chunk:
            chunk_text = " ".join(current_chunk)
            chunks.append(chunk_text)
            logger.debug(
                f"Created final chunk {len(chunks)}: {len(chunk_text)} characters, {len(current_chunk)} words"
            )

        logger.debug(f"Large section splitting completed: {len(chunks)} chunks created")
        return chunks