Spaces:
Sleeping
Sleeping
File size: 45,797 Bytes
8850406 f7af463 8850406 fc6bf99 8850406 fc6bf99 8850406 fc6bf99 8850406 fc6bf99 8850406 fc6bf99 8850406 fc6bf99 8850406 f7af463 8850406 fc6bf99 8850406 fc6bf99 8850406 fcd8049 fc6bf99 fcd8049 fc6bf99 fcd8049 f7af463 fcd8049 f7af463 2ad9a80 fc6bf99 f7af463 fcd8049 f7af463 fc6bf99 8850406 fc6bf99 8850406 f7af463 8850406 d2e30e2 8850406 fc6bf99 9df58dd fc6bf99 9df58dd fc6bf99 8850406 d2e30e2 8850406 fc6bf99 9df58dd fc6bf99 9df58dd fc6bf99 8850406 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 |
"""
Evolusis AI Agent - Unified Single Application
All-in-one Streamlit app with integrated AI agent logic
Run with: streamlit run app.py
"""
import streamlit as st
import os
import time
import logging
import json
import re
import copy
import tempfile
from datetime import datetime
from typing import Optional, Dict, Any, List
from collections import deque
import requests
from dotenv import load_dotenv
from groq import Groq
# Load environment variables
load_dotenv()
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Environment variables
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
OPENWEATHER_API_KEY = os.getenv("OPENWEATHER_API_KEY")
NEWS_API_KEY = os.getenv("NEWS_API_KEY")
# Initialize Groq
groq_client = None
logger.info("=== Initializing Groq Client ===")
logger.info(f"GROQ_API_KEY present: {bool(GROQ_API_KEY)}")
logger.info(f"GROQ_API_KEY length: {len(GROQ_API_KEY) if GROQ_API_KEY else 0}")
if GROQ_API_KEY:
try:
logger.info("Starting Groq client initialization...")
# Initialize Groq client for HF Spaces compatibility
# Remove any proxy-related environment variables that might interfere
env_backup = {}
proxy_vars = ['HTTP_PROXY', 'HTTPS_PROXY', 'http_proxy', 'https_proxy',
'ALL_PROXY', 'all_proxy', 'NO_PROXY', 'no_proxy']
for var in proxy_vars:
if var in os.environ:
env_backup[var] = os.environ.pop(var)
logger.info(f"Removed proxy variable: {var}")
# Initialize Groq with minimal parameters
groq_client = Groq(api_key=GROQ_API_KEY)
# Restore environment variables
for var, value in env_backup.items():
os.environ[var] = value
logger.info("β
Groq client initialized successfully")
except Exception as e:
logger.error(f"β Failed to initialize Groq: {type(e).__name__}: {e}")
logger.error("Full error details:", exc_info=True)
groq_client = None
else:
logger.error("β GROQ_API_KEY not found in environment variables")
# Memory Store
class MemoryStore:
def __init__(self, max_size=10):
self.sessions = {}
self.max_size = max_size
def add(self, session_id: str, query: str, response: str):
if session_id not in self.sessions:
self.sessions[session_id] = deque(maxlen=self.max_size)
self.sessions[session_id].append({
"query": query,
"response": response,
"timestamp": datetime.now().isoformat()
})
def get_history(self, session_id: str, limit: int = 5) -> List[Dict]:
if session_id not in self.sessions:
return []
return list(self.sessions[session_id])[-limit:]
memory_store = MemoryStore()
# Tool Registry
class ToolRegistry:
@staticmethod
def transcribe_audio(audio_file) -> Optional[str]:
"""Transcribe audio using Whisper Large V3 Turbo"""
temp_file_path = None
try:
logger.info("=== Starting audio transcription ===")
if not groq_client:
logger.error("Groq client not initialized")
return None
# Ensure file pointer is at the beginning
if hasattr(audio_file, 'seek'):
audio_file.seek(0)
logger.info("Reset file pointer to beginning")
# Get the original filename or create a default one with proper extension
# Streamlit's audio_input typically records in WAV format
filename = getattr(audio_file, 'name', 'audio.wav')
logger.info(f"Original filename: {filename}")
# Determine file extension
file_ext = '.wav'
if any(filename.lower().endswith(ext) for ext in ['.wav', '.mp3', '.webm', '.m4a', '.ogg']):
file_ext = os.path.splitext(filename)[1]
logger.info(f"Using file extension: {file_ext}")
# Read the file contents
file_contents = audio_file.read()
file_size = len(file_contents)
logger.info(f"Read {file_size} bytes from audio file")
if file_size == 0:
logger.error("Audio file is empty (0 bytes)")
return None
# Check if file is too small
if file_size < 1000:
logger.warning(f"Audio file very small: {file_size} bytes. May be too short.")
# Save to temporary file (more reliable approach)
with tempfile.NamedTemporaryFile(mode='wb', suffix=file_ext, delete=False) as temp_file:
temp_file.write(file_contents)
temp_file_path = temp_file.name
logger.info(f"Saved audio to temporary file: {temp_file_path}")
# Open the temporary file and send to Groq API
logger.info(f"Sending to Groq API - Model: whisper-large-v3-turbo, Size: {file_size} bytes")
with open(temp_file_path, 'rb') as audio_file_handle:
try:
transcription = groq_client.audio.transcriptions.create(
file=(os.path.basename(temp_file_path), audio_file_handle.read()),
model="whisper-large-v3-turbo",
response_format="text",
temperature=0.0
)
logger.info("API call completed successfully")
except Exception as api_error:
logger.error(f"Groq API call failed: {type(api_error).__name__}")
logger.error(f"API error details: {str(api_error)}")
# Try to extract more details if it's a Groq API error
if hasattr(api_error, 'response'):
logger.error(f"Response status: {getattr(api_error.response, 'status_code', 'N/A')}")
logger.error(f"Response body: {getattr(api_error.response, 'text', 'N/A')}")
raise # Re-raise to be caught by outer exception handler
result = str(transcription)
logger.info(f"Transcription successful. Length: {len(result)} characters")
logger.info(f"Transcription preview: {result[:100]}...")
return result
except Exception as e:
logger.error(f"=== Whisper API Error ===")
logger.error(f"Error type: {type(e).__name__}")
logger.error(f"Error message: {str(e)}")
logger.error(f"Full error details:", exc_info=True)
return None
finally:
# Clean up temporary file
if temp_file_path and os.path.exists(temp_file_path):
try:
os.unlink(temp_file_path)
logger.info(f"Cleaned up temporary file: {temp_file_path}")
except Exception as cleanup_error:
logger.warning(f"Failed to cleanup temp file: {cleanup_error}")
@staticmethod
def get_weather(city: str) -> Optional[Dict[str, Any]]:
try:
if not OPENWEATHER_API_KEY:
return None
url = f"http://api.openweathermap.org/data/2.5/weather"
params = {"q": city, "appid": OPENWEATHER_API_KEY, "units": "metric"}
response = requests.get(url, params=params, timeout=5)
response.raise_for_status()
data = response.json()
return {
"temperature": data["main"]["temp"],
"description": data["weather"][0]["description"],
"humidity": data["main"]["humidity"],
"city": data["name"],
"country": data["sys"]["country"]
}
except Exception as e:
logger.error(f"Weather API error: {e}")
return None
@staticmethod
def get_wikipedia(topic: str) -> Optional[str]:
try:
url = "https://en.wikipedia.org/api/rest_v1/page/summary/" + topic.replace(" ", "_")
response = requests.get(url, timeout=5)
response.raise_for_status()
return response.json().get("extract", "No information found")
except Exception as e:
logger.error(f"Wikipedia API error: {e}")
return None
@staticmethod
def get_news(query: str) -> Optional[List[Dict]]:
try:
if not NEWS_API_KEY:
return None
url = "https://newsapi.org/v2/everything"
params = {"q": query, "apiKey": NEWS_API_KEY, "pageSize": 3, "sortBy": "publishedAt", "language": "en"}
response = requests.get(url, params=params, timeout=5)
response.raise_for_status()
data = response.json()
if data.get("articles"):
return [{"title": a["title"], "description": a.get("description", ""),
"source": a["source"]["name"], "url": a["url"]} for a in data["articles"][:3]]
return None
except Exception as e:
logger.error(f"News API error: {e}")
return None
# AI Agent
class AIAgent:
def __init__(self):
self.tools = ToolRegistry()
def decide_tool(self, query: str, history: Optional[List[Dict]] = None) -> Dict[str, Any]:
"""Use LLM reasoning to decide which tools to use"""
if not groq_client:
# Fallback to simple pattern matching if LLM not available
return self._fallback_decision(query, history)
llm_decision = "" # Initialize to avoid unbound variable error
try:
# Build rich context from history
context_str = "No previous conversation."
if history and len(history) > 0:
context_parts = []
for h in history[-3:]:
q = h.get('query', '')
r = h.get('response', '')[:150] # Truncate response
context_parts.append(f"User: {q}\nAssistant: {r}")
context_str = "\n\n".join(context_parts)
# Create enhanced reasoning prompt
reasoning_prompt = f"""You are an intelligent tool routing system that analyzes user queries to determine which external tools to invoke.
**Available Tools:**
1. **WEATHER** - Fetch current weather data for any city/location/country
- Use when: User mentions weather, temperature, climate, or location names (cities, countries, regions)
- Examples: "weather in Paris", "how's the climate in Tokyo", "america?" (after weather context), "London temperature"
- Can extract location from: explicit mentions, country names, city names, or follow-up questions
2. **WIKIPEDIA** - Retrieve factual knowledge about people, places, events, concepts
- Use when: User asks "who is", "what is", "tell me about", "explain", historical/biographical queries
- Examples: "who invented the telephone", "what is quantum physics", "Albert Einstein"
3. **NEWS** - Get latest news articles on specific topics
- Use when: User asks about "news", "latest", "recent events", "headlines", current happenings
- Examples: "latest AI news", "what's happening in tech", "recent developments"
4. **LLM_ONLY** - Use language model for general conversation, reasoning, explanations
- Use when: No external data needed, creative/opinion questions, general chat
**Recent Conversation Context:**
{context_str}
**Current Query:** {query}
**Analysis Instructions:**
- If query is very short (1-2 words) like "america?", "paris", "london" - check conversation history
- If previous query was about weather, treat short location names as weather requests
- Country names (USA, America, India, France, etc.) should trigger WEATHER when appropriate
- Ambiguous queries should prefer external data sources over LLM-only responses
- Use conversation context to resolve ambiguity in follow-up questions
**Response Format (JSON only):**
{{
"use_weather": true/false,
"use_wikipedia": true/false,
"use_news": true/false,
"city": "city/country/location name if weather needed, else null",
"topic": "topic name if wikipedia needed, else null",
"news_query": "search terms if news needed, else null",
"reasoning": "Clear explanation: What did you detect? Why these tools? What context influenced your decision?"
}}
**Important:**
- For location queries (cities, countries, regions), always prefer WEATHER tool
- "America" / "USA" should be treated as weather query if context suggests it
- Be smart about follow-up questions - use conversation history
- Provide detailed reasoning explaining your tool selection logic"""
response = groq_client.chat.completions.create(
model="llama-3.3-70b-versatile",
messages=[
{"role": "system", "content": "You are an expert tool routing system. Analyze queries deeply and respond with valid JSON only. No markdown, no explanations outside JSON."},
{"role": "user", "content": reasoning_prompt}
],
temperature=0.2,
max_tokens=400
)
# Parse LLM response
llm_decision = response.choices[0].message.content
if not llm_decision:
logger.warning("Empty LLM response, using fallback")
return self._fallback_decision(query, history)
# Extract JSON from response (handle potential markdown formatting)
json_match = re.search(r'\{[\s\S]*\}', llm_decision)
if json_match:
decision_data = json.loads(json_match.group())
else:
decision_data = json.loads(llm_decision)
# Build decision object
decision = {
"use_weather": decision_data.get("use_weather", False),
"use_wikipedia": decision_data.get("use_wikipedia", False),
"use_news": decision_data.get("use_news", False),
"use_llm": True,
"extracted_params": {},
"reasoning": decision_data.get("reasoning", "LLM tool routing decision made")
}
# Extract parameters with validation
if decision["use_weather"]:
city = decision_data.get("city")
if city and city != "null":
decision["extracted_params"]["city"] = city
logger.info(f"Weather tool selected for city: {city}")
else:
logger.warning("Weather tool selected but no city extracted")
decision["use_weather"] = False
if decision["use_wikipedia"]:
topic = decision_data.get("topic")
if topic and topic != "null":
decision["extracted_params"]["topic"] = topic
logger.info(f"Wikipedia tool selected for topic: {topic}")
if decision["use_news"]:
news_query = decision_data.get("news_query")
if news_query and news_query != "null":
decision["extracted_params"]["news_query"] = news_query
logger.info(f"News tool selected for query: {news_query}")
return decision
except json.JSONDecodeError as e:
logger.error(f"JSON parsing error in LLM response: {e}")
if 'llm_decision' in locals():
logger.error(f"LLM response was: {llm_decision}")
return self._fallback_decision(query, history)
except Exception as e:
logger.error(f"LLM reasoning error: {e}")
# Fallback to pattern matching
return self._fallback_decision(query, history)
def _fallback_decision(self, query: str, history: Optional[List[Dict]] = None) -> Dict[str, Any]:
"""Enhanced fallback pattern-based decision making with better context awareness"""
query_lower = query.lower().strip()
decision = {
"use_weather": False,
"use_wikipedia": False,
"use_news": False,
"use_llm": True,
"extracted_params": {},
"reasoning": "Pattern-based routing (LLM unavailable)"
}
# Analyze conversation history for context
previous_context = ""
was_weather_context = False
was_wiki_context = False
if history and len(history) > 0:
last_query = history[-1].get("query", "").lower()
previous_context = last_query
# Check what the last query was about
weather_keywords = ["weather", "temperature", "forecast", "climate", "hot", "cold", "rain", "sunny", "cloudy"]
was_weather_context = any(kw in previous_context for kw in weather_keywords)
wiki_keywords = ["who is", "what is", "tell me about", "explain"]
was_wiki_context = any(kw in previous_context for kw in wiki_keywords)
# Extract potential location/topic from query
query_words = query_lower.strip("?,.! ").split()
# WEATHER DETECTION
weather_keywords = ["weather", "temperature", "forecast", "climate", "hot", "cold", "rain", "sunny", "cloudy"]
has_weather_keyword = any(kw in query_lower for kw in weather_keywords)
# Countries and major locations that should trigger weather
location_names = [
"america", "usa", "united states", "india", "china", "japan", "france", "germany",
"london", "paris", "tokyo", "mumbai", "delhi", "bangalore", "new york", "sydney",
"chembur", "andheri", "bandra", "pune", "hyderabad", "chennai", "kolkata",
"california", "texas", "florida", "europe", "asia", "africa"
]
has_location = any(loc in query_lower for loc in location_names)
# Short query after weather context = likely a location follow-up
is_short_followup = len(query_words) <= 2 and was_weather_context
# Decide if this is a weather query
if has_weather_keyword or has_location or is_short_followup:
decision["use_weather"] = True
city = self._extract_city(query, previous_context)
if city:
decision["extracted_params"]["city"] = city
decision["reasoning"] = f"Detected weather query for location: {city}"
else:
# If no city extracted, disable weather tool
decision["use_weather"] = False
# WIKIPEDIA DETECTION
knowledge_keywords = ["who is", "what is", "tell me about", "explain", "who invented", "who discovered", "define"]
if any(kw in query_lower for kw in knowledge_keywords):
decision["use_wikipedia"] = True
topic = self._extract_topic(query)
decision["extracted_params"]["topic"] = topic
decision["reasoning"] = f"Knowledge query detected for: {topic}"
# NEWS DETECTION
news_keywords = ["news", "latest", "recent", "happening", "current events", "headlines", "breaking"]
if any(kw in query_lower for kw in news_keywords):
decision["use_news"] = True
news_query = self._extract_news_query(query)
decision["extracted_params"]["news_query"] = news_query
decision["reasoning"] = f"News query detected for: {news_query}"
return decision
def _extract_city(self, query: str, previous_context: str = "") -> Optional[str]:
"""Enhanced city extraction with country/region support"""
query_lower = query.lower().strip()
# Handle explicit "in" syntax: "weather in Paris"
if " in " in query_lower:
parts = query_lower.split(" in ")
if len(parts) > 1:
city_part = parts[1].strip("?,.! ").split()[0]
return city_part.title()
# Map country/region names to capitals or major cities for weather API
country_to_city = {
"america": "New York",
"usa": "New York",
"united states": "New York",
"india": "Mumbai",
"china": "Beijing",
"japan": "Tokyo",
"france": "Paris",
"germany": "Berlin",
"uk": "London",
"united kingdom": "London",
"australia": "Sydney",
"canada": "Toronto",
"brazil": "Rio de Janeiro",
"russia": "Moscow",
"italy": "Rome",
"spain": "Madrid",
"mexico": "Mexico City"
}
# Check for country names
for country, city in country_to_city.items():
if country in query_lower:
logger.info(f"Mapped country '{country}' to city '{city}'")
return city
# Common cities and locations
cities = [
"london", "paris", "tokyo", "new york", "mumbai", "delhi", "bangalore", "sydney",
"chembur", "andheri", "bandra", "pune", "hyderabad", "chennai", "kolkata",
"berlin", "madrid", "rome", "beijing", "shanghai", "los angeles", "chicago",
"toronto", "vancouver", "dubai", "singapore", "hong kong", "seoul"
]
for city in cities:
if city in query_lower:
return city.title()
# If query is very short (1-2 words) and looks like a location name, use it
words = query.strip("?,. ").split()
if len(words) <= 2:
potential_city = query.strip("?,. ").title()
# Additional validation: if all letters (no special chars), likely a location
if potential_city.replace(" ", "").isalpha():
logger.info(f"Treating short query '{potential_city}' as location name")
return potential_city
return None
def _extract_topic(self, query: str) -> str:
stop_words = ["who is", "what is", "tell me about", "explain", "who invented", "who discovered", "what's", "the"]
topic = query.lower()
for word in stop_words:
topic = topic.replace(word, "")
return topic.strip("?,. ")
def _extract_news_query(self, query: str) -> str:
stop_words = ["news", "latest", "recent", "what's", "tell me", "about", "the"]
topic = query.lower()
for word in stop_words:
topic = topic.replace(word, "")
return topic.strip("?,. ") or "technology"
def process_query(self, query: str, session_id: str) -> dict:
start_time = time.time()
tools_used = []
reasoning_parts = []
history = memory_store.get_history(session_id, limit=3)
decision = self.decide_tool(query, history)
# Add LLM reasoning if available
if decision.get("reasoning"):
reasoning_parts.append(f"π§ LLM Decision: {decision['reasoning']}")
else:
reasoning_parts.append(f"Analyzed query intent: {query}")
external_data = []
if decision["use_weather"]:
city = decision["extracted_params"].get("city")
if city:
reasoning_parts.append(f"Fetching weather for {city}")
weather = self.tools.get_weather(city)
if weather:
tools_used.append("OpenWeather API")
external_data.append(f"Weather in {weather['city']}, {weather['country']}: {weather['temperature']}Β°C, {weather['description']}, Humidity: {weather['humidity']}%")
if decision["use_news"]:
news_query = decision["extracted_params"].get("news_query", "technology")
reasoning_parts.append(f"Fetching news about {news_query}")
news = self.tools.get_news(news_query)
if news:
tools_used.append("NewsAPI")
news_text = "\n".join([f"- {item['title']} ({item['source']})" for item in news])
external_data.append(f"Latest news:\n{news_text}")
if decision["use_wikipedia"]:
topic = decision["extracted_params"].get("topic")
if topic:
reasoning_parts.append(f"Fetching Wikipedia info for {topic}")
wiki_data = self.tools.get_wikipedia(topic)
if wiki_data:
tools_used.append("Wikipedia API")
external_data.append(f"Wikipedia: {wiki_data[:500]}")
else:
reasoning_parts.append("Wikipedia data not available")
reasoning_parts.append("Generating response with GPT oss-120B")
if groq_client:
tools_used.append("GPT oss-120B (Groq)")
llm_response = self._call_groq(query, external_data, history)
else:
llm_response = "AI model unavailable. Please configure GROQ_API_KEY."
memory_store.add(session_id, query, llm_response)
response_time = int((time.time() - start_time) * 1000)
return {
"reasoning": " β ".join(reasoning_parts),
"answer": llm_response,
"tools_used": tools_used,
"response_time_ms": response_time,
"session_id": session_id
}
def _call_groq(self, query: str, external_data: List[str], history: List[Dict]) -> str:
if not groq_client:
return "Groq client not initialized. Please check GROQ_API_KEY."
try:
prompt_parts = ["You are a helpful AI assistant."]
if history:
prompt_parts.append("\nHistory:")
for item in history:
prompt_parts.append(f"User: {item['query']}\nAssistant: {item['response'][:200]}...")
if external_data:
prompt_parts.append("\nExternal Data:")
prompt_parts.extend(external_data)
prompt_parts.append(f"\nUser: {query}\nProvide a helpful response:")
response = groq_client.chat.completions.create(
model="llama-3.3-70b-versatile",
messages=[{"role": "system", "content": "You are a helpful AI assistant."},
{"role": "user", "content": "\n".join(prompt_parts)}],
temperature=0.7,
max_tokens=500
)
return response.choices[0].message.content or "No response generated."
except Exception as e:
logger.error(f"Groq error: {e}")
return "Error generating response."
# Initialize agent
agent = AIAgent()
# Streamlit UI starts here
if True:
# Page configuration
st.set_page_config(
page_title="Evolusis AI Agent",
page_icon="π€",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS
st.markdown("""
<style>
.main {
background-color: #0e1117;
}
.stTextInput > div > div > input {
background-color: #1e1e1e;
color: #ffffff;
border: 1px solid #333;
border-radius: 8px;
padding: 12px;
}
.user-message {
background-color: #2b5278;
color: white;
padding: 12px 16px;
border-radius: 12px;
margin: 8px 0;
margin-left: 20%;
text-align: right;
}
.assistant-message {
background-color: #1e1e1e;
color: #e0e0e0;
padding: 12px 16px;
border-radius: 12px;
margin: 8px 0;
margin-right: 20%;
}
.metadata {
font-size: 0.8em;
color: #888;
margin-top: 6px;
}
.tool-badge {
display: inline-block;
background-color: #333;
color: #4CAF50;
padding: 2px 8px;
border-radius: 4px;
margin-right: 6px;
font-size: 0.75em;
}
.welcome-section {
text-align: center;
padding: 5px 20px;
}
.dev-info-card {
text-align: center;
padding: 5px;
margin: 10px 0;
color: #e0e0e0;
font-size: 0.95em;
}
.dev-info-card a {
color: #60a5fa;
text-decoration: none;
}
.dev-info-card a:hover {
text-decoration: underline;
}
.status-bar {
padding: 8px 20px;
margin-top: 30px;
text-align: center;
color: #888;
font-size: 0.85em;
}
h1 {
color: #4CAF50;
}
/* Sidebar conversation history - plain text style */
.stSidebar button[kind="secondary"] {
background: transparent !important;
border: none !important;
box-shadow: none !important;
padding: 4px 0 !important;
text-align: left !important;
color: #e0e0e0 !important;
font-size: 0.9em !important;
}
.stSidebar button[kind="secondary"]:hover {
background: transparent !important;
color: #60a5fa !important;
}
</style>
""", unsafe_allow_html=True)
# Initialize session state
if "messages" not in st.session_state:
st.session_state.messages = []
if "session_id" not in st.session_state:
st.session_state.session_id = f"session_{int(time.time())}_{hash(time.time())}"
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
if "saved_conversations" not in st.session_state:
st.session_state.saved_conversations = []
if "processing" not in st.session_state:
st.session_state.processing = False
if "last_input" not in st.session_state:
st.session_state.last_input = ""
# Example queries
EXAMPLE_QUERIES = [
"What's the weather in Paris today?",
"Who invented the telephone?",
"Latest news about artificial intelligence",
"Tell me about Albert Einstein",
"Weather in Mumbai",
"Recent technology news",
"What is quantum computing?",
"Explain the theory of relativity",
"What are the benefits of meditation?",
"How does photosynthesis work?"
]
def call_agent(query: str) -> dict:
"""Call the AI agent directly"""
try:
return agent.process_query(query, st.session_state.session_id)
except Exception as e:
logger.error(f"Agent error: {e}")
return {
"answer": f"β Error: {str(e)}",
"tools_used": [],
"response_time_ms": 0,
"reasoning": f"Error: {str(e)}"
}
def display_message(message: dict):
"""Display a chat message"""
if message["role"] == "user":
st.markdown(f'<div class="user-message">π€ {message["content"]}</div>', unsafe_allow_html=True)
else:
# Show reasoning in collapsible section
if "reasoning" in message and message["reasoning"]:
with st.expander("π§ Reasoning", expanded=False):
st.markdown("**Decision Process:**")
st.text(message["reasoning"])
# Show JSON response
st.markdown("**JSON Response:**")
json_output = {
"reasoning": message["reasoning"],
"answer": message["content"],
"tools_used": message.get("tools_used", []),
"response_time_ms": message.get("response_time_ms", 0),
"timestamp": message.get("timestamp", "")
}
st.json(json_output)
# Show main answer
st.markdown(f'<div class="assistant-message">π€ {message["content"]}</div>', unsafe_allow_html=True)
if "tools_used" in message and message["tools_used"]:
tools_html = " ".join([f'<span class="tool-badge">{tool}</span>' for tool in message["tools_used"]])
metadata = f'<div class="metadata">{tools_html}'
if "response_time_ms" in message and message["response_time_ms"] > 0:
metadata += f' β±οΈ {message["response_time_ms"]}ms'
metadata += '</div>'
st.markdown(metadata, unsafe_allow_html=True)
def process_query(query: str):
"""Process user query"""
# Prevent processing if already processing
if st.session_state.processing:
return
st.session_state.processing = True
st.session_state.messages.append({
"role": "user",
"content": query,
"timestamp": datetime.now().isoformat()
})
with st.spinner("π€ Thinking..."):
response = call_agent(query)
st.session_state.messages.append({
"role": "assistant",
"content": response.get("answer", "No response"),
"tools_used": response.get("tools_used", []),
"response_time_ms": response.get("response_time_ms", 0),
"reasoning": response.get("reasoning", ""),
"timestamp": datetime.now().isoformat()
})
# Save to chat history
if len(st.session_state.messages) >= 2:
st.session_state.chat_history.append({
"query": query,
"timestamp": datetime.now().strftime("%H:%M:%S"),
"session_id": st.session_state.session_id
})
if len(st.session_state.chat_history) > 20:
st.session_state.chat_history = st.session_state.chat_history[-20:]
# Reset processing flag after a short delay
st.session_state.processing = False
# Header
st.title("π€ Evolusis AI Agent")
# Main content
if len(st.session_state.messages) == 0:
# Developer info card - right after title
st.markdown("""
<div class="dev-info-card">
Yash Gori - +91 7718081766 / <a href="mailto:[email protected]">Email</a> / <a href="https://yashgori20.vercel.app/" target="_blank">Portfolio</a>
</div>
""", unsafe_allow_html=True)
# Welcome screen with developer info and status
st.markdown('<div class="welcome-section">', unsafe_allow_html=True)
st.markdown("### Intelligent assistant combining LLM reasoning with real-time data")
st.markdown("**Powered by:** GPT oss-120B β’ Whisper Large V3 Turbo β’ OpenWeather β’ Wikipedia β’ NewsAPI")
st.markdown('</div>', unsafe_allow_html=True)
# Chat input and audio upload
st.markdown("---")
# Audio recording for speech-to-text
audio_input = st.audio_input("π€ Click to speak")
if audio_input:
with st.spinner("π§ Transcribing your voice..."):
try:
logger.info(f"Received audio input: {audio_input}")
logger.info(f"Audio input type: {type(audio_input)}")
logger.info(f"Audio input name: {getattr(audio_input, 'name', 'N/A')}")
transcription = agent.tools.transcribe_audio(audio_input)
if transcription:
st.success(f"β
You said: {transcription}")
process_query(transcription)
st.rerun()
else:
error_details = "Transcription returned None. Possible causes:\n"
error_details += "- Audio file is empty or too short\n"
error_details += "- Groq API key invalid or missing\n"
error_details += "- Network connectivity issue\n"
error_details += f"- Groq client initialized: {bool(groq_client)}"
st.error(f"β Transcription failed\n\n{error_details}")
logger.error("Transcription returned None")
except Exception as e:
error_msg = f"β Error during transcription\n\n"
error_msg += f"**Error Type:** {type(e).__name__}\n\n"
error_msg += f"**Error Message:** {str(e)}\n\n"
# Add more context if available
if hasattr(e, '__cause__') and e.__cause__:
error_msg += f"**Cause:** {str(e.__cause__)}\n\n"
st.error(error_msg)
logger.error(f"Transcription UI error: {e}", exc_info=True)
# Text input
user_input = st.text_input("β¨οΈ Or type your question...", key="chat_input_text")
if user_input and user_input != st.session_state.last_input:
st.session_state.last_input = user_input
process_query(user_input)
st.rerun()
st.markdown("---")
st.markdown("π€οΈ **Weather Queries:**")
col_a, col_b = st.columns(2)
with col_a:
if st.button(EXAMPLE_QUERIES[0], key="ex_0", use_container_width=True):
st.session_state.last_input = EXAMPLE_QUERIES[0]
process_query(EXAMPLE_QUERIES[0])
st.rerun()
with col_b:
if st.button(EXAMPLE_QUERIES[4], key="ex_4", use_container_width=True):
st.session_state.last_input = EXAMPLE_QUERIES[4]
process_query(EXAMPLE_QUERIES[4])
st.rerun()
st.markdown("π **Knowledge Queries:**")
col_c, col_d = st.columns(2)
with col_c:
if st.button(EXAMPLE_QUERIES[1], key="ex_1", use_container_width=True):
st.session_state.last_input = EXAMPLE_QUERIES[1]
process_query(EXAMPLE_QUERIES[1])
st.rerun()
with col_d:
if st.button(EXAMPLE_QUERIES[3], key="ex_3", use_container_width=True):
st.session_state.last_input = EXAMPLE_QUERIES[3]
process_query(EXAMPLE_QUERIES[3])
st.rerun()
st.markdown("π° **News Queries:**")
col_e, col_f = st.columns(2)
with col_e:
if st.button(EXAMPLE_QUERIES[2], key="ex_2", use_container_width=True):
st.session_state.last_input = EXAMPLE_QUERIES[2]
process_query(EXAMPLE_QUERIES[2])
st.rerun()
with col_f:
if st.button(EXAMPLE_QUERIES[5], key="ex_5", use_container_width=True):
st.session_state.last_input = EXAMPLE_QUERIES[5]
process_query(EXAMPLE_QUERIES[5])
st.rerun()
st.markdown("π§ **Reasoning Queries (Groq LLM Only):**")
col_g, col_h = st.columns(2)
with col_g:
if st.button(EXAMPLE_QUERIES[6], key="ex_6", use_container_width=True):
st.session_state.last_input = EXAMPLE_QUERIES[6]
process_query(EXAMPLE_QUERIES[6])
st.rerun()
if st.button(EXAMPLE_QUERIES[8], key="ex_8", use_container_width=True):
st.session_state.last_input = EXAMPLE_QUERIES[8]
process_query(EXAMPLE_QUERIES[8])
st.rerun()
with col_h:
if st.button(EXAMPLE_QUERIES[7], key="ex_7", use_container_width=True):
st.session_state.last_input = EXAMPLE_QUERIES[7]
process_query(EXAMPLE_QUERIES[7])
st.rerun()
if st.button(EXAMPLE_QUERIES[9], key="ex_9", use_container_width=True):
st.session_state.last_input = EXAMPLE_QUERIES[9]
process_query(EXAMPLE_QUERIES[9])
st.rerun()
else:
# Show conversation messages
for message in st.session_state.messages:
display_message(message)
# Continue conversation input
st.markdown("---")
# Audio recording for follow-up
audio_input = st.audio_input("π€ Click to speak", key="followup_audio")
if audio_input and not st.session_state.processing:
with st.spinner("π§ Transcribing your voice..."):
try:
logger.info(f"Received followup audio input: {audio_input}")
logger.info(f"Audio input type: {type(audio_input)}")
logger.info(f"Audio input name: {getattr(audio_input, 'name', 'N/A')}")
transcription = agent.tools.transcribe_audio(audio_input)
if transcription:
st.success(f"β
You said: {transcription}")
process_query(transcription)
st.rerun()
else:
error_details = "Transcription returned None. Possible causes:\n"
error_details += "- Audio file is empty or too short\n"
error_details += "- Groq API key invalid or missing\n"
error_details += "- Network connectivity issue\n"
error_details += f"- Groq client initialized: {bool(groq_client)}"
st.error(f"β Transcription failed\n\n{error_details}")
logger.error("Transcription returned None")
except Exception as e:
error_msg = f"β Error during transcription\n\n"
error_msg += f"**Error Type:** {type(e).__name__}\n\n"
error_msg += f"**Error Message:** {str(e)}\n\n"
# Add more context if available
if hasattr(e, '__cause__') and e.__cause__:
error_msg += f"**Cause:** {str(e.__cause__)}\n\n"
st.error(error_msg)
logger.error(f"Transcription UI error: {e}", exc_info=True)
# Text input for follow-up
user_input = st.text_input("β¨οΈ Continue the conversation...", key="followup_text")
if user_input and user_input != st.session_state.last_input and not st.session_state.processing:
st.session_state.last_input = user_input
process_query(user_input)
st.rerun()
# System Status Bar at the end
status_groq = 'β' if groq_client is not None else 'β'
status_weather = 'β' if OPENWEATHER_API_KEY else 'β'
status_news = 'β' if NEWS_API_KEY else 'β'
st.markdown(f"""
<div class="status-bar">
Groq {status_groq} | Weather {status_weather} | News {status_news} | Wiki β | Sessions: {len(memory_store.sessions)}
</div>
""", unsafe_allow_html=True)
# Left Sidebar - Chat History and Controls
with st.sidebar:
if st.button("π New Chat", use_container_width=True):
# Save current conversation before starting new one
if st.session_state.messages:
first_query = st.session_state.messages[0]["content"] if st.session_state.messages else "Conversation"
# Create a deep copy to avoid reference issues
st.session_state.saved_conversations.append({
"title": first_query[:50] + "...",
"messages": copy.deepcopy(st.session_state.messages),
"session_id": st.session_state.session_id, # Keep original session ID for history
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M")
})
# Keep only last 10 conversations
if len(st.session_state.saved_conversations) > 10:
st.session_state.saved_conversations = st.session_state.saved_conversations[-10:]
st.session_state.messages = []
# Generate a new session ID for the new chat
st.session_state.session_id = f"session_{int(time.time())}_{hash(time.time())}"
st.session_state.last_input = ""
st.rerun()
if st.button("ποΈ Clear History", use_container_width=True):
st.session_state.chat_history = []
st.session_state.saved_conversations = []
st.rerun()
st.markdown("<div style='margin: 20px 0; border-top: 1px solid #333;'></div>", unsafe_allow_html=True)
if st.session_state.saved_conversations:
for idx, conv in enumerate(reversed(st.session_state.saved_conversations)):
# Simple clickable text without button box styling
if st.button(conv['title'], key=f"conv_{idx}"):
# Restore this conversation with deep copy to avoid reference issues
st.session_state.messages = copy.deepcopy(conv["messages"])
# Generate a new session ID to avoid memory store conflicts
st.session_state.session_id = f"session_{int(time.time())}_{hash(time.time())}"
st.rerun()
# Minimal separator with less padding
if idx < len(st.session_state.saved_conversations) - 1:
st.markdown("<div style='margin: 4px 0; border-top: 1px solid #222;'></div>", unsafe_allow_html=True)
else:
st.markdown("<div style='text-align: center; color: #666; font-size: 0.85em; margin-top: 20px;'>No saved conversations</div>", unsafe_allow_html=True)
|