Guetat Youssef
commited on
Commit
·
0e7f220
1
Parent(s):
fbe7ca1
test
Browse files
app.py
CHANGED
|
@@ -376,7 +376,311 @@ def train_model_background(job_id, dataset_name, base_model_name=None):
|
|
| 376 |
shutil.rmtree(temp_dir)
|
| 377 |
except:
|
| 378 |
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 379 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 380 |
def create_model_zip(model_path, job_id):
|
| 381 |
"""Create a zip file containing the trained model"""
|
| 382 |
memory_file = io.BytesIO()
|
|
|
|
| 376 |
shutil.rmtree(temp_dir)
|
| 377 |
except:
|
| 378 |
pass
|
| 379 |
+
def train_model_background(job_id, dataset_name, base_model_name=None):
|
| 380 |
+
"""Background training function with improved configuration"""
|
| 381 |
+
progress = training_jobs[job_id]
|
| 382 |
+
|
| 383 |
+
try:
|
| 384 |
+
# Create a temporary directory for this job
|
| 385 |
+
temp_dir = tempfile.mkdtemp(prefix=f"train_{job_id}_")
|
| 386 |
+
|
| 387 |
+
# Set environment variables for caching
|
| 388 |
+
os.environ['HF_HOME'] = temp_dir
|
| 389 |
+
os.environ['TRANSFORMERS_CACHE'] = temp_dir
|
| 390 |
+
os.environ['HF_DATASETS_CACHE'] = temp_dir
|
| 391 |
+
os.environ['TORCH_HOME'] = temp_dir
|
| 392 |
+
|
| 393 |
+
progress.status = "loading_libraries"
|
| 394 |
+
progress.message = "Loading required libraries..."
|
| 395 |
+
|
| 396 |
+
# Import heavy libraries after setting cache paths
|
| 397 |
+
import torch
|
| 398 |
+
from datasets import load_dataset, Dataset
|
| 399 |
+
from huggingface_hub import login
|
| 400 |
+
from transformers import (
|
| 401 |
+
AutoModelForCausalLM,
|
| 402 |
+
AutoTokenizer,
|
| 403 |
+
TrainingArguments,
|
| 404 |
+
Trainer,
|
| 405 |
+
TrainerCallback,
|
| 406 |
+
DataCollatorForLanguageModeling
|
| 407 |
+
)
|
| 408 |
+
from peft import (
|
| 409 |
+
LoraConfig,
|
| 410 |
+
get_peft_model,
|
| 411 |
+
TaskType
|
| 412 |
+
)
|
| 413 |
+
|
| 414 |
+
# === Authentication ===
|
| 415 |
+
hf_token = os.getenv('HF_TOKEN')
|
| 416 |
+
if hf_token:
|
| 417 |
+
login(token=hf_token)
|
| 418 |
+
|
| 419 |
+
progress.status = "loading_model"
|
| 420 |
+
progress.message = "Loading base model and tokenizer..."
|
| 421 |
+
|
| 422 |
+
# === Better Model Selection ===
|
| 423 |
+
# Use a more suitable model for medical conversations
|
| 424 |
+
base_model = base_model_name or "microsoft/DialoGPT-medium" # Better than small
|
| 425 |
+
new_model = f"trained-model-{job_id}"
|
| 426 |
+
max_length = 512 # Increased for better context
|
| 427 |
+
|
| 428 |
+
# === Load Model and Tokenizer ===
|
| 429 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 430 |
+
base_model,
|
| 431 |
+
cache_dir=temp_dir,
|
| 432 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 433 |
+
device_map="auto" if torch.cuda.is_available() else "cpu",
|
| 434 |
+
trust_remote_code=True,
|
| 435 |
+
low_cpu_mem_usage=True
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 439 |
+
base_model,
|
| 440 |
+
cache_dir=temp_dir,
|
| 441 |
+
trust_remote_code=True,
|
| 442 |
+
padding_side="right" # Important for causal LM
|
| 443 |
+
)
|
| 444 |
+
|
| 445 |
+
# Add padding token if not present
|
| 446 |
+
if tokenizer.pad_token is None:
|
| 447 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 448 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 449 |
+
|
| 450 |
+
# Resize token embeddings if needed
|
| 451 |
+
model.resize_token_embeddings(len(tokenizer))
|
| 452 |
+
|
| 453 |
+
progress.status = "preparing_model"
|
| 454 |
+
progress.message = "Setting up improved LoRA configuration..."
|
| 455 |
+
|
| 456 |
+
# === Better LoRA Config ===
|
| 457 |
+
peft_config = LoraConfig(
|
| 458 |
+
r=16, # Increased rank for better learning
|
| 459 |
+
lora_alpha=32, # Increased alpha
|
| 460 |
+
lora_dropout=0.05, # Reduced dropout
|
| 461 |
+
bias="none",
|
| 462 |
+
task_type=TaskType.CAUSAL_LM,
|
| 463 |
+
target_modules=["c_attn", "c_proj"], # Target specific modules for DialoGPT
|
| 464 |
+
)
|
| 465 |
+
model = get_peft_model(model, peft_config)
|
| 466 |
+
|
| 467 |
+
# Print trainable parameters
|
| 468 |
+
model.print_trainable_parameters()
|
| 469 |
+
|
| 470 |
+
progress.status = "loading_dataset"
|
| 471 |
+
progress.message = "Loading and preparing dataset..."
|
| 472 |
+
|
| 473 |
+
# === Load & Prepare Dataset ===
|
| 474 |
+
dataset = load_dataset(
|
| 475 |
+
dataset_name,
|
| 476 |
+
split="train" if "train" in load_dataset(dataset_name, cache_dir=temp_dir).keys() else "all",
|
| 477 |
+
cache_dir=temp_dir,
|
| 478 |
+
trust_remote_code=True
|
| 479 |
+
)
|
| 480 |
+
|
| 481 |
+
# Automatically detect question and answer columns
|
| 482 |
+
question_col, answer_col = detect_qa_columns(dataset)
|
| 483 |
+
|
| 484 |
+
if not question_col or not answer_col:
|
| 485 |
+
raise ValueError("Could not automatically detect question and answer columns in the dataset")
|
| 486 |
+
|
| 487 |
+
progress.detected_columns = {"question": question_col, "answer": answer_col}
|
| 488 |
+
progress.message = f"Detected columns - Question: {question_col}, Answer: {answer_col}"
|
| 489 |
+
|
| 490 |
+
# Use more data for better training
|
| 491 |
+
dataset_size = min(1000, len(dataset)) # Increased from 100 to 1000
|
| 492 |
+
dataset = dataset.shuffle(seed=42).select(range(dataset_size))
|
| 493 |
+
|
| 494 |
+
# === Better Text Formatting ===
|
| 495 |
+
def format_conversation(example):
|
| 496 |
+
question = str(example[question_col]).strip()
|
| 497 |
+
answer = str(example[answer_col]).strip()
|
| 498 |
+
|
| 499 |
+
# Better formatting with special tokens
|
| 500 |
+
conversation = f"<|user|>{question}<|assistant|>{answer}<|endoftext|>"
|
| 501 |
+
return {"text": conversation}
|
| 502 |
+
|
| 503 |
+
# Apply formatting
|
| 504 |
+
dataset = dataset.map(format_conversation, remove_columns=dataset.column_names)
|
| 505 |
+
|
| 506 |
+
# Filter out very short or very long examples
|
| 507 |
+
dataset = dataset.filter(lambda x: 10 < len(x["text"]) < max_length * 2)
|
| 508 |
+
|
| 509 |
+
# === Improved Training Arguments ===
|
| 510 |
+
batch_size = 4 if torch.cuda.is_available() else 2
|
| 511 |
+
gradient_accumulation_steps = 2
|
| 512 |
+
num_epochs = 3 # Increased epochs
|
| 513 |
+
learning_rate = 2e-4 # Better learning rate
|
| 514 |
+
|
| 515 |
+
steps_per_epoch = len(dataset) // (batch_size * gradient_accumulation_steps)
|
| 516 |
+
total_steps = steps_per_epoch * num_epochs
|
| 517 |
+
warmup_steps = max(10, total_steps // 10) # 10% warmup
|
| 518 |
+
|
| 519 |
+
progress.total_steps = total_steps
|
| 520 |
+
progress.status = "training"
|
| 521 |
+
progress.message = "Starting improved training..."
|
| 522 |
+
|
| 523 |
+
output_dir = os.path.join(temp_dir, new_model)
|
| 524 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 525 |
+
|
| 526 |
+
training_args = TrainingArguments(
|
| 527 |
+
output_dir=output_dir,
|
| 528 |
+
per_device_train_batch_size=batch_size,
|
| 529 |
+
gradient_accumulation_steps=gradient_accumulation_steps,
|
| 530 |
+
num_train_epochs=num_epochs,
|
| 531 |
+
learning_rate=learning_rate,
|
| 532 |
+
warmup_steps=warmup_steps,
|
| 533 |
+
logging_steps=5,
|
| 534 |
+
save_steps=max(10, total_steps // 4),
|
| 535 |
+
save_total_limit=2,
|
| 536 |
+
evaluation_strategy="no",
|
| 537 |
+
logging_strategy="steps",
|
| 538 |
+
save_strategy="steps",
|
| 539 |
+
fp16=torch.cuda.is_available(),
|
| 540 |
+
bf16=False,
|
| 541 |
+
dataloader_num_workers=0,
|
| 542 |
+
remove_unused_columns=False,
|
| 543 |
+
report_to=None,
|
| 544 |
+
prediction_loss_only=True,
|
| 545 |
+
optim="adamw_torch",
|
| 546 |
+
weight_decay=0.01,
|
| 547 |
+
lr_scheduler_type="cosine",
|
| 548 |
+
gradient_checkpointing=True,
|
| 549 |
+
dataloader_pin_memory=False,
|
| 550 |
+
)
|
| 551 |
+
|
| 552 |
+
# === Data Collator ===
|
| 553 |
+
data_collator = DataCollatorForLanguageModeling(
|
| 554 |
+
tokenizer=tokenizer,
|
| 555 |
+
mlm=False, # We're doing causal LM, not masked LM
|
| 556 |
+
return_tensors="pt",
|
| 557 |
+
pad_to_multiple_of=8,
|
| 558 |
+
)
|
| 559 |
+
|
| 560 |
+
# Custom tokenization function
|
| 561 |
+
def tokenize_function(examples):
|
| 562 |
+
# Tokenize the text
|
| 563 |
+
tokenized = tokenizer(
|
| 564 |
+
examples["text"],
|
| 565 |
+
truncation=True,
|
| 566 |
+
padding=False, # Will be handled by data collator
|
| 567 |
+
max_length=max_length,
|
| 568 |
+
return_tensors=None,
|
| 569 |
+
)
|
| 570 |
+
|
| 571 |
+
# For causal LM, labels are the same as input_ids
|
| 572 |
+
tokenized["labels"] = tokenized["input_ids"].copy()
|
| 573 |
+
return tokenized
|
| 574 |
+
|
| 575 |
+
# Tokenize dataset
|
| 576 |
+
tokenized_dataset = dataset.map(
|
| 577 |
+
tokenize_function,
|
| 578 |
+
batched=True,
|
| 579 |
+
remove_columns=dataset.column_names,
|
| 580 |
+
desc="Tokenizing dataset",
|
| 581 |
+
)
|
| 582 |
+
|
| 583 |
+
# Custom callback to track progress
|
| 584 |
+
class ProgressCallback(TrainerCallback):
|
| 585 |
+
def __init__(self, progress_tracker):
|
| 586 |
+
self.progress_tracker = progress_tracker
|
| 587 |
+
self.last_update = time.time()
|
| 588 |
+
|
| 589 |
+
def on_log(self, args, state, control, model=None, logs=None, **kwargs):
|
| 590 |
+
current_time = time.time()
|
| 591 |
+
# Update every 5 seconds
|
| 592 |
+
if current_time - self.last_update >= 5:
|
| 593 |
+
self.progress_tracker.update_progress(
|
| 594 |
+
state.global_step,
|
| 595 |
+
state.max_steps,
|
| 596 |
+
f"Training step {state.global_step}/{state.max_steps}"
|
| 597 |
+
)
|
| 598 |
+
self.last_update = current_time
|
| 599 |
+
|
| 600 |
+
# Log training metrics if available
|
| 601 |
+
if logs:
|
| 602 |
+
loss = logs.get('train_loss', logs.get('loss', 'N/A'))
|
| 603 |
+
lr = logs.get('learning_rate', 'N/A')
|
| 604 |
+
self.progress_tracker.message = f"Step {state.global_step}/{state.max_steps}, Loss: {loss:.4f}, LR: {lr}"
|
| 605 |
+
|
| 606 |
+
def on_train_begin(self, args, state, control, **kwargs):
|
| 607 |
+
self.progress_tracker.status = "training"
|
| 608 |
+
self.progress_tracker.message = "Training started with improved configuration..."
|
| 609 |
+
|
| 610 |
+
def on_train_end(self, args, state, control, **kwargs):
|
| 611 |
+
self.progress_tracker.status = "saving"
|
| 612 |
+
self.progress_tracker.message = "Training complete, saving improved model..."
|
| 613 |
|
| 614 |
+
# === Trainer Initialization ===
|
| 615 |
+
trainer = Trainer(
|
| 616 |
+
model=model,
|
| 617 |
+
args=training_args,
|
| 618 |
+
train_dataset=tokenized_dataset,
|
| 619 |
+
data_collator=data_collator,
|
| 620 |
+
callbacks=[ProgressCallback(progress)],
|
| 621 |
+
tokenizer=tokenizer,
|
| 622 |
+
)
|
| 623 |
+
|
| 624 |
+
# === Train & Save ===
|
| 625 |
+
trainer.train()
|
| 626 |
+
|
| 627 |
+
# Save the model properly
|
| 628 |
+
trainer.save_model(output_dir)
|
| 629 |
+
tokenizer.save_pretrained(output_dir)
|
| 630 |
+
|
| 631 |
+
# Also save the base model name for inference
|
| 632 |
+
with open(os.path.join(output_dir, "base_model.txt"), "w") as f:
|
| 633 |
+
f.write(base_model)
|
| 634 |
+
|
| 635 |
+
# Save training info
|
| 636 |
+
training_info = {
|
| 637 |
+
"base_model": base_model,
|
| 638 |
+
"dataset_name": dataset_name,
|
| 639 |
+
"dataset_size": len(dataset),
|
| 640 |
+
"max_length": max_length,
|
| 641 |
+
"batch_size": batch_size,
|
| 642 |
+
"learning_rate": learning_rate,
|
| 643 |
+
"num_epochs": num_epochs,
|
| 644 |
+
"total_steps": total_steps,
|
| 645 |
+
"detected_columns": progress.detected_columns
|
| 646 |
+
}
|
| 647 |
+
|
| 648 |
+
with open(os.path.join(output_dir, "training_info.json"), "w") as f:
|
| 649 |
+
import json
|
| 650 |
+
json.dump(training_info, f, indent=2)
|
| 651 |
+
|
| 652 |
+
# Save model info
|
| 653 |
+
progress.model_path = output_dir
|
| 654 |
+
progress.status = "completed"
|
| 655 |
+
progress.progress = 100
|
| 656 |
+
progress.message = f"Improved training completed! Model ready for download."
|
| 657 |
+
|
| 658 |
+
# Keep the temp directory for download (cleanup after 2 hours for larger model)
|
| 659 |
+
def cleanup_temp_dir():
|
| 660 |
+
time.sleep(7200) # Wait 2 hours before cleanup
|
| 661 |
+
try:
|
| 662 |
+
shutil.rmtree(temp_dir)
|
| 663 |
+
# Remove from training_jobs after cleanup
|
| 664 |
+
if job_id in training_jobs:
|
| 665 |
+
del training_jobs[job_id]
|
| 666 |
+
except:
|
| 667 |
+
pass
|
| 668 |
+
|
| 669 |
+
cleanup_thread = threading.Thread(target=cleanup_temp_dir)
|
| 670 |
+
cleanup_thread.daemon = True
|
| 671 |
+
cleanup_thread.start()
|
| 672 |
+
|
| 673 |
+
except Exception as e:
|
| 674 |
+
progress.status = "error"
|
| 675 |
+
progress.error = str(e)
|
| 676 |
+
progress.message = f"Training failed: {str(e)}"
|
| 677 |
+
|
| 678 |
+
# Clean up on error
|
| 679 |
+
try:
|
| 680 |
+
if 'temp_dir' in locals():
|
| 681 |
+
shutil.rmtree(temp_dir)
|
| 682 |
+
except:
|
| 683 |
+
pass
|
| 684 |
def create_model_zip(model_path, job_id):
|
| 685 |
"""Create a zip file containing the trained model"""
|
| 686 |
memory_file = io.BytesIO()
|