Guetat Youssef
commited on
Commit
·
3349c56
1
Parent(s):
e4256df
test
Browse files- Dockerfile +13 -4
- app.py +109 -89
Dockerfile
CHANGED
|
@@ -7,8 +7,21 @@ RUN apt-get update && apt-get install -y \
|
|
| 7 |
git \
|
| 8 |
curl \
|
| 9 |
build-essential \
|
|
|
|
| 10 |
&& rm -rf /var/lib/apt/lists/*
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
# Copy requirements and install Python dependencies
|
| 13 |
COPY requirements.txt .
|
| 14 |
RUN pip install --no-cache-dir -r requirements.txt
|
|
@@ -19,9 +32,5 @@ COPY . .
|
|
| 19 |
# Expose port
|
| 20 |
EXPOSE 7860
|
| 21 |
|
| 22 |
-
# Set environment variables
|
| 23 |
-
ENV PYTHONPATH=/app
|
| 24 |
-
ENV FLASK_APP=app.py
|
| 25 |
-
|
| 26 |
# Run the application
|
| 27 |
CMD ["python", "app.py"]
|
|
|
|
| 7 |
git \
|
| 8 |
curl \
|
| 9 |
build-essential \
|
| 10 |
+
wget \
|
| 11 |
&& rm -rf /var/lib/apt/lists/*
|
| 12 |
|
| 13 |
+
# Create cache directory with proper permissions
|
| 14 |
+
RUN mkdir -p /app/cache && chmod 777 /app/cache
|
| 15 |
+
RUN mkdir -p /app/models && chmod 777 /app/models
|
| 16 |
+
|
| 17 |
+
# Set environment variables for caching
|
| 18 |
+
ENV HF_HOME=/app/cache
|
| 19 |
+
ENV TRANSFORMERS_CACHE=/app/cache
|
| 20 |
+
ENV HF_DATASETS_CACHE=/app/cache
|
| 21 |
+
ENV TORCH_HOME=/app/cache
|
| 22 |
+
ENV PYTHONPATH=/app
|
| 23 |
+
ENV FLASK_APP=app.py
|
| 24 |
+
|
| 25 |
# Copy requirements and install Python dependencies
|
| 26 |
COPY requirements.txt .
|
| 27 |
RUN pip install --no-cache-dir -r requirements.txt
|
|
|
|
| 32 |
# Expose port
|
| 33 |
EXPOSE 7860
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
# Run the application
|
| 36 |
CMD ["python", "app.py"]
|
app.py
CHANGED
|
@@ -2,30 +2,11 @@ from flask import Flask, jsonify, request
|
|
| 2 |
import threading
|
| 3 |
import time
|
| 4 |
import os
|
| 5 |
-
import
|
| 6 |
-
|
| 7 |
-
from huggingface_hub import login
|
| 8 |
-
from transformers import (
|
| 9 |
-
AutoConfig,
|
| 10 |
-
AutoModelForCausalLM,
|
| 11 |
-
AutoTokenizer,
|
| 12 |
-
BitsAndBytesConfig,
|
| 13 |
-
TrainingArguments,
|
| 14 |
-
pipeline,
|
| 15 |
-
logging,
|
| 16 |
-
DataCollatorForLanguageModeling,
|
| 17 |
-
)
|
| 18 |
-
from peft import (
|
| 19 |
-
LoraConfig,
|
| 20 |
-
PeftModel,
|
| 21 |
-
prepare_model_for_kbit_training,
|
| 22 |
-
get_peft_model,
|
| 23 |
-
)
|
| 24 |
-
from trl import SFTTrainer, setup_chat_format
|
| 25 |
import uuid
|
| 26 |
from datetime import datetime, timedelta
|
| 27 |
|
| 28 |
-
# ============== CONFIGURATION ==============
|
| 29 |
app = Flask(__name__)
|
| 30 |
|
| 31 |
# Global variables to track training progress
|
|
@@ -74,60 +55,78 @@ def train_model_background(job_id):
|
|
| 74 |
progress = training_jobs[job_id]
|
| 75 |
|
| 76 |
try:
|
| 77 |
-
#
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
from huggingface_hub import login
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
hf_token = os.getenv('HF_TOKEN')
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
raise ValueError("HF_TOKEN is not set. Please define it as an environment variable or secret.")
|
| 85 |
-
|
| 86 |
-
login(token=hf_token)
|
| 87 |
-
|
| 88 |
|
| 89 |
progress.status = "loading_model"
|
| 90 |
progress.message = "Loading base model and tokenizer..."
|
| 91 |
|
| 92 |
# === Configuration ===
|
| 93 |
-
base_model = "
|
| 94 |
dataset_name = "ruslanmv/ai-medical-chatbot"
|
| 95 |
-
new_model = f"
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
# === QLoRA Config ===
|
| 100 |
-
bnb_config = BitsAndBytesConfig(
|
| 101 |
-
load_in_4bit=True,
|
| 102 |
-
bnb_4bit_quant_type="nf4",
|
| 103 |
-
bnb_4bit_compute_dtype=torch_dtype,
|
| 104 |
-
bnb_4bit_use_double_quant=True,
|
| 105 |
-
)
|
| 106 |
-
|
| 107 |
-
# === Load Model and Tokenizer ===
|
| 108 |
model = AutoModelForCausalLM.from_pretrained(
|
| 109 |
base_model,
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
|
|
|
| 113 |
)
|
| 114 |
-
|
| 115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
|
| 117 |
progress.status = "preparing_model"
|
| 118 |
progress.message = "Setting up LoRA configuration..."
|
| 119 |
|
| 120 |
-
# === LoRA Config ===
|
| 121 |
peft_config = LoraConfig(
|
| 122 |
-
r=
|
| 123 |
-
lora_alpha=
|
| 124 |
-
lora_dropout=0.
|
| 125 |
bias="none",
|
| 126 |
task_type="CAUSAL_LM",
|
| 127 |
-
target_modules=[
|
| 128 |
-
'up_proj', 'down_proj', 'gate_proj',
|
| 129 |
-
'k_proj', 'q_proj', 'v_proj', 'o_proj'
|
| 130 |
-
]
|
| 131 |
)
|
| 132 |
model = get_peft_model(model, peft_config)
|
| 133 |
|
|
@@ -135,29 +134,26 @@ def train_model_background(job_id):
|
|
| 135 |
progress.message = "Loading and preparing dataset..."
|
| 136 |
|
| 137 |
# === Load & Prepare Dataset ===
|
| 138 |
-
dataset = load_dataset(
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
{"role": "user", "content": row["Patient"]},
|
| 144 |
-
{"role": "assistant", "content": row["Doctor"]}
|
| 145 |
-
]
|
| 146 |
-
row["text"] = tokenizer.apply_chat_template(row_json, tokenize=False)
|
| 147 |
-
return row
|
| 148 |
-
|
| 149 |
-
dataset = dataset.map(
|
| 150 |
-
format_chat_template,
|
| 151 |
-
fn_kwargs={"tokenizer": tokenizer},
|
| 152 |
-
num_proc=4
|
| 153 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
|
|
|
|
| 155 |
dataset = dataset.train_test_split(test_size=0.1)
|
| 156 |
|
| 157 |
# Calculate total training steps
|
| 158 |
train_size = len(dataset["train"])
|
| 159 |
batch_size = 1
|
| 160 |
-
gradient_accumulation_steps =
|
| 161 |
num_epochs = 1
|
| 162 |
|
| 163 |
steps_per_epoch = train_size // (batch_size * gradient_accumulation_steps)
|
|
@@ -168,29 +164,33 @@ def train_model_background(job_id):
|
|
| 168 |
progress.message = "Starting training..."
|
| 169 |
|
| 170 |
# === Training Arguments ===
|
|
|
|
|
|
|
|
|
|
| 171 |
training_args = TrainingArguments(
|
| 172 |
-
output_dir=
|
| 173 |
per_device_train_batch_size=batch_size,
|
| 174 |
per_device_eval_batch_size=1,
|
| 175 |
gradient_accumulation_steps=gradient_accumulation_steps,
|
| 176 |
-
optim="
|
| 177 |
num_train_epochs=num_epochs,
|
| 178 |
-
eval_steps=0.
|
| 179 |
logging_steps=1,
|
| 180 |
-
warmup_steps=
|
| 181 |
logging_strategy="steps",
|
| 182 |
-
learning_rate=
|
| 183 |
fp16=False,
|
| 184 |
bf16=False,
|
| 185 |
group_by_length=True,
|
| 186 |
-
save_steps=
|
| 187 |
-
save_total_limit=
|
| 188 |
-
report_to=None
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
)
|
| 190 |
|
| 191 |
-
# === Data Collator ===
|
| 192 |
-
tokenizer.model_max_length = 512
|
| 193 |
-
|
| 194 |
# Custom callback to track progress
|
| 195 |
class ProgressCallback:
|
| 196 |
def __init__(self, progress_tracker):
|
|
@@ -200,7 +200,7 @@ def train_model_background(job_id):
|
|
| 200 |
def on_log(self, args, state, control, model=None, logs=None, **kwargs):
|
| 201 |
current_time = time.time()
|
| 202 |
# Update every 10 seconds or on significant step changes
|
| 203 |
-
if current_time - self.last_update >= 10 or state.global_step %
|
| 204 |
self.progress_tracker.update_progress(
|
| 205 |
state.global_step,
|
| 206 |
state.max_steps,
|
|
@@ -212,24 +212,44 @@ def train_model_background(job_id):
|
|
| 212 |
trainer = SFTTrainer(
|
| 213 |
model=model,
|
| 214 |
train_dataset=dataset["train"],
|
| 215 |
-
eval_dataset=dataset["test"],
|
| 216 |
peft_config=peft_config,
|
| 217 |
args=training_args,
|
| 218 |
-
callbacks=[ProgressCallback(progress)]
|
|
|
|
|
|
|
| 219 |
)
|
| 220 |
|
| 221 |
# === Train & Save ===
|
| 222 |
trainer.train()
|
| 223 |
-
trainer.save_model(
|
| 224 |
|
| 225 |
progress.status = "completed"
|
| 226 |
progress.progress = 100
|
| 227 |
-
progress.message = f"Training completed! Model saved
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
|
| 229 |
except Exception as e:
|
| 230 |
progress.status = "error"
|
| 231 |
progress.error = str(e)
|
| 232 |
progress.message = f"Training failed: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 233 |
|
| 234 |
# ============== API ROUTES ==============
|
| 235 |
@app.route('/api/train', methods=['POST'])
|
|
|
|
| 2 |
import threading
|
| 3 |
import time
|
| 4 |
import os
|
| 5 |
+
import tempfile
|
| 6 |
+
import shutil
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
import uuid
|
| 8 |
from datetime import datetime, timedelta
|
| 9 |
|
|
|
|
| 10 |
app = Flask(__name__)
|
| 11 |
|
| 12 |
# Global variables to track training progress
|
|
|
|
| 55 |
progress = training_jobs[job_id]
|
| 56 |
|
| 57 |
try:
|
| 58 |
+
# Create a temporary directory for this job
|
| 59 |
+
temp_dir = tempfile.mkdtemp(prefix=f"train_{job_id}_")
|
| 60 |
+
|
| 61 |
+
# Set environment variables for caching
|
| 62 |
+
os.environ['HF_HOME'] = temp_dir
|
| 63 |
+
os.environ['TRANSFORMERS_CACHE'] = temp_dir
|
| 64 |
+
os.environ['HF_DATASETS_CACHE'] = temp_dir
|
| 65 |
+
os.environ['TORCH_HOME'] = temp_dir
|
| 66 |
+
|
| 67 |
+
progress.status = "loading_libraries"
|
| 68 |
+
progress.message = "Loading required libraries..."
|
| 69 |
+
|
| 70 |
+
# Import heavy libraries after setting cache paths
|
| 71 |
+
import torch
|
| 72 |
+
from datasets import load_dataset
|
| 73 |
from huggingface_hub import login
|
| 74 |
+
from transformers import (
|
| 75 |
+
AutoConfig,
|
| 76 |
+
AutoModelForCausalLM,
|
| 77 |
+
AutoTokenizer,
|
| 78 |
+
BitsAndBytesConfig,
|
| 79 |
+
TrainingArguments,
|
| 80 |
+
logging,
|
| 81 |
+
)
|
| 82 |
+
from peft import (
|
| 83 |
+
LoraConfig,
|
| 84 |
+
get_peft_model,
|
| 85 |
+
)
|
| 86 |
+
from trl import SFTTrainer, setup_chat_format
|
| 87 |
+
|
| 88 |
+
# === Authentication ===
|
| 89 |
hf_token = os.getenv('HF_TOKEN')
|
| 90 |
+
if hf_token:
|
| 91 |
+
login(token=hf_token)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
progress.status = "loading_model"
|
| 94 |
progress.message = "Loading base model and tokenizer..."
|
| 95 |
|
| 96 |
# === Configuration ===
|
| 97 |
+
base_model = "microsoft/DialoGPT-small" # Smaller model for testing
|
| 98 |
dataset_name = "ruslanmv/ai-medical-chatbot"
|
| 99 |
+
new_model = f"trained-model-{job_id}"
|
| 100 |
+
|
| 101 |
+
# === Load Model and Tokenizer (without quantization for simplicity) ===
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
model = AutoModelForCausalLM.from_pretrained(
|
| 103 |
base_model,
|
| 104 |
+
cache_dir=temp_dir,
|
| 105 |
+
torch_dtype=torch.float32, # Use float32 for compatibility
|
| 106 |
+
device_map="auto" if torch.cuda.is_available() else "cpu",
|
| 107 |
+
trust_remote_code=True
|
| 108 |
)
|
| 109 |
+
|
| 110 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 111 |
+
base_model,
|
| 112 |
+
cache_dir=temp_dir,
|
| 113 |
+
trust_remote_code=True
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
# Add padding token if not present
|
| 117 |
+
if tokenizer.pad_token is None:
|
| 118 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 119 |
|
| 120 |
progress.status = "preparing_model"
|
| 121 |
progress.message = "Setting up LoRA configuration..."
|
| 122 |
|
| 123 |
+
# === LoRA Config (simplified) ===
|
| 124 |
peft_config = LoraConfig(
|
| 125 |
+
r=8, # Smaller rank
|
| 126 |
+
lora_alpha=16,
|
| 127 |
+
lora_dropout=0.1,
|
| 128 |
bias="none",
|
| 129 |
task_type="CAUSAL_LM",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
)
|
| 131 |
model = get_peft_model(model, peft_config)
|
| 132 |
|
|
|
|
| 134 |
progress.message = "Loading and preparing dataset..."
|
| 135 |
|
| 136 |
# === Load & Prepare Dataset ===
|
| 137 |
+
dataset = load_dataset(
|
| 138 |
+
dataset_name,
|
| 139 |
+
split="all",
|
| 140 |
+
cache_dir=temp_dir,
|
| 141 |
+
trust_remote_code=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
)
|
| 143 |
+
dataset = dataset.shuffle(seed=65).select(range(100)) # Use only 100 samples for testing
|
| 144 |
+
|
| 145 |
+
def format_chat_template(row):
|
| 146 |
+
# Simple formatting without chat template
|
| 147 |
+
text = f"Patient: {row['Patient']}\nDoctor: {row['Doctor']}"
|
| 148 |
+
return {"text": text}
|
| 149 |
|
| 150 |
+
dataset = dataset.map(format_chat_template, num_proc=1)
|
| 151 |
dataset = dataset.train_test_split(test_size=0.1)
|
| 152 |
|
| 153 |
# Calculate total training steps
|
| 154 |
train_size = len(dataset["train"])
|
| 155 |
batch_size = 1
|
| 156 |
+
gradient_accumulation_steps = 1
|
| 157 |
num_epochs = 1
|
| 158 |
|
| 159 |
steps_per_epoch = train_size // (batch_size * gradient_accumulation_steps)
|
|
|
|
| 164 |
progress.message = "Starting training..."
|
| 165 |
|
| 166 |
# === Training Arguments ===
|
| 167 |
+
output_dir = os.path.join(temp_dir, new_model)
|
| 168 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 169 |
+
|
| 170 |
training_args = TrainingArguments(
|
| 171 |
+
output_dir=output_dir,
|
| 172 |
per_device_train_batch_size=batch_size,
|
| 173 |
per_device_eval_batch_size=1,
|
| 174 |
gradient_accumulation_steps=gradient_accumulation_steps,
|
| 175 |
+
optim="adamw_torch", # Use standard optimizer
|
| 176 |
num_train_epochs=num_epochs,
|
| 177 |
+
eval_steps=0.5,
|
| 178 |
logging_steps=1,
|
| 179 |
+
warmup_steps=5,
|
| 180 |
logging_strategy="steps",
|
| 181 |
+
learning_rate=5e-5,
|
| 182 |
fp16=False,
|
| 183 |
bf16=False,
|
| 184 |
group_by_length=True,
|
| 185 |
+
save_steps=10,
|
| 186 |
+
save_total_limit=1,
|
| 187 |
+
report_to=None,
|
| 188 |
+
dataloader_num_workers=0,
|
| 189 |
+
remove_unused_columns=False,
|
| 190 |
+
load_best_model_at_end=False,
|
| 191 |
+
evaluation_strategy="no" # Disable evaluation for simplicity
|
| 192 |
)
|
| 193 |
|
|
|
|
|
|
|
|
|
|
| 194 |
# Custom callback to track progress
|
| 195 |
class ProgressCallback:
|
| 196 |
def __init__(self, progress_tracker):
|
|
|
|
| 200 |
def on_log(self, args, state, control, model=None, logs=None, **kwargs):
|
| 201 |
current_time = time.time()
|
| 202 |
# Update every 10 seconds or on significant step changes
|
| 203 |
+
if current_time - self.last_update >= 10 or state.global_step % 5 == 0:
|
| 204 |
self.progress_tracker.update_progress(
|
| 205 |
state.global_step,
|
| 206 |
state.max_steps,
|
|
|
|
| 212 |
trainer = SFTTrainer(
|
| 213 |
model=model,
|
| 214 |
train_dataset=dataset["train"],
|
|
|
|
| 215 |
peft_config=peft_config,
|
| 216 |
args=training_args,
|
| 217 |
+
callbacks=[ProgressCallback(progress)],
|
| 218 |
+
tokenizer=tokenizer,
|
| 219 |
+
max_seq_length=256, # Shorter sequences
|
| 220 |
)
|
| 221 |
|
| 222 |
# === Train & Save ===
|
| 223 |
trainer.train()
|
| 224 |
+
trainer.save_model(output_dir)
|
| 225 |
|
| 226 |
progress.status = "completed"
|
| 227 |
progress.progress = 100
|
| 228 |
+
progress.message = f"Training completed! Model saved to {output_dir}"
|
| 229 |
+
|
| 230 |
+
# Clean up temporary directory after a delay
|
| 231 |
+
def cleanup_temp_dir():
|
| 232 |
+
time.sleep(300) # Wait 5 minutes before cleanup
|
| 233 |
+
try:
|
| 234 |
+
shutil.rmtree(temp_dir)
|
| 235 |
+
except:
|
| 236 |
+
pass
|
| 237 |
+
|
| 238 |
+
cleanup_thread = threading.Thread(target=cleanup_temp_dir)
|
| 239 |
+
cleanup_thread.daemon = True
|
| 240 |
+
cleanup_thread.start()
|
| 241 |
|
| 242 |
except Exception as e:
|
| 243 |
progress.status = "error"
|
| 244 |
progress.error = str(e)
|
| 245 |
progress.message = f"Training failed: {str(e)}"
|
| 246 |
+
|
| 247 |
+
# Clean up on error
|
| 248 |
+
try:
|
| 249 |
+
if 'temp_dir' in locals():
|
| 250 |
+
shutil.rmtree(temp_dir)
|
| 251 |
+
except:
|
| 252 |
+
pass
|
| 253 |
|
| 254 |
# ============== API ROUTES ==============
|
| 255 |
@app.route('/api/train', methods=['POST'])
|