Guetat Youssef
commited on
Commit
·
c2215d0
1
Parent(s):
8f8763e
test
Browse files
app.py
CHANGED
|
@@ -112,7 +112,7 @@ def detect_qa_columns(dataset):
|
|
| 112 |
return question_col, answer_col
|
| 113 |
|
| 114 |
def train_model_background(job_id, dataset_name, base_model_name=None):
|
| 115 |
-
"""Background training function with
|
| 116 |
progress = training_jobs[job_id]
|
| 117 |
|
| 118 |
try:
|
|
@@ -138,12 +138,10 @@ def train_model_background(job_id, dataset_name, base_model_name=None):
|
|
| 138 |
TrainingArguments,
|
| 139 |
Trainer,
|
| 140 |
TrainerCallback,
|
| 141 |
-
DataCollatorForLanguageModeling
|
| 142 |
)
|
| 143 |
from peft import (
|
| 144 |
LoraConfig,
|
| 145 |
get_peft_model,
|
| 146 |
-
TaskType
|
| 147 |
)
|
| 148 |
|
| 149 |
# === Authentication ===
|
|
@@ -154,32 +152,29 @@ def train_model_background(job_id, dataset_name, base_model_name=None):
|
|
| 154 |
progress.status = "loading_model"
|
| 155 |
progress.message = "Loading base model and tokenizer..."
|
| 156 |
|
| 157 |
-
# ===
|
| 158 |
-
base_model = base_model_name or "microsoft/DialoGPT-
|
| 159 |
new_model = f"trained-model-{job_id}"
|
| 160 |
-
max_length =
|
| 161 |
|
| 162 |
# === Load Model and Tokenizer ===
|
| 163 |
model = AutoModelForCausalLM.from_pretrained(
|
| 164 |
base_model,
|
| 165 |
cache_dir=temp_dir,
|
| 166 |
-
torch_dtype=torch.
|
| 167 |
device_map="auto" if torch.cuda.is_available() else "cpu",
|
| 168 |
-
trust_remote_code=True
|
| 169 |
-
low_cpu_mem_usage=True
|
| 170 |
)
|
| 171 |
|
| 172 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 173 |
base_model,
|
| 174 |
cache_dir=temp_dir,
|
| 175 |
-
trust_remote_code=True
|
| 176 |
-
padding_side="right"
|
| 177 |
)
|
| 178 |
|
| 179 |
# Add padding token if not present
|
| 180 |
if tokenizer.pad_token is None:
|
| 181 |
tokenizer.pad_token = tokenizer.eos_token
|
| 182 |
-
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 183 |
|
| 184 |
# Resize token embeddings if needed
|
| 185 |
model.resize_token_embeddings(len(tokenizer))
|
|
@@ -189,17 +184,13 @@ def train_model_background(job_id, dataset_name, base_model_name=None):
|
|
| 189 |
|
| 190 |
# === LoRA Config ===
|
| 191 |
peft_config = LoraConfig(
|
| 192 |
-
r=
|
| 193 |
-
lora_alpha=
|
| 194 |
-
lora_dropout=0.
|
| 195 |
bias="none",
|
| 196 |
-
task_type=
|
| 197 |
-
target_modules=["c_attn", "c_proj"],
|
| 198 |
)
|
| 199 |
model = get_peft_model(model, peft_config)
|
| 200 |
-
|
| 201 |
-
# Print trainable parameters
|
| 202 |
-
model.print_trainable_parameters()
|
| 203 |
|
| 204 |
progress.status = "loading_dataset"
|
| 205 |
progress.message = "Loading and preparing dataset..."
|
|
@@ -221,62 +212,71 @@ def train_model_background(job_id, dataset_name, base_model_name=None):
|
|
| 221 |
progress.detected_columns = {"question": question_col, "answer": answer_col}
|
| 222 |
progress.message = f"Detected columns - Question: {question_col}, Answer: {answer_col}"
|
| 223 |
|
| 224 |
-
# Use subset for faster
|
| 225 |
-
|
| 226 |
-
dataset = dataset.shuffle(seed=42).select(range(dataset_size))
|
| 227 |
|
| 228 |
-
#
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
conversation = f"Question: {question}\nAnswer: {answer}{tokenizer.eos_token}"
|
| 235 |
-
return {"text": conversation}
|
| 236 |
-
|
| 237 |
-
# Apply formatting
|
| 238 |
-
formatted_dataset = dataset.map(format_conversation, remove_columns=dataset.column_names)
|
| 239 |
-
|
| 240 |
-
# Filter out very short or very long examples
|
| 241 |
-
formatted_dataset = formatted_dataset.filter(lambda x: 10 < len(x["text"]) < max_length * 3)
|
| 242 |
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
# Tokenize the text
|
| 246 |
-
model_inputs = tokenizer(
|
| 247 |
-
examples["text"],
|
| 248 |
-
truncation=True,
|
| 249 |
-
padding=False, # Will be handled by data collator
|
| 250 |
-
max_length=max_length,
|
| 251 |
-
return_tensors=None,
|
| 252 |
-
)
|
| 253 |
-
|
| 254 |
-
# For causal LM, labels are the same as input_ids
|
| 255 |
-
model_inputs["labels"] = model_inputs["input_ids"].copy()
|
| 256 |
-
return model_inputs
|
| 257 |
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
|
| 266 |
-
#
|
| 267 |
-
batch_size =
|
| 268 |
-
gradient_accumulation_steps =
|
| 269 |
-
num_epochs =
|
| 270 |
-
learning_rate = 2e-4
|
| 271 |
|
| 272 |
-
steps_per_epoch = len(
|
| 273 |
total_steps = steps_per_epoch * num_epochs
|
| 274 |
-
warmup_steps = max(10, total_steps // 10)
|
| 275 |
|
| 276 |
progress.total_steps = total_steps
|
| 277 |
progress.status = "training"
|
| 278 |
progress.message = "Starting training..."
|
| 279 |
|
|
|
|
| 280 |
output_dir = os.path.join(temp_dir, new_model)
|
| 281 |
os.makedirs(output_dir, exist_ok=True)
|
| 282 |
|
|
@@ -285,33 +285,19 @@ def train_model_background(job_id, dataset_name, base_model_name=None):
|
|
| 285 |
per_device_train_batch_size=batch_size,
|
| 286 |
gradient_accumulation_steps=gradient_accumulation_steps,
|
| 287 |
num_train_epochs=num_epochs,
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
evaluation_strategy="no",
|
| 294 |
logging_strategy="steps",
|
| 295 |
save_strategy="steps",
|
| 296 |
-
fp16=
|
| 297 |
bf16=False,
|
| 298 |
dataloader_num_workers=0,
|
| 299 |
remove_unused_columns=False,
|
| 300 |
report_to=None,
|
| 301 |
prediction_loss_only=True,
|
| 302 |
-
optim="adamw_torch",
|
| 303 |
-
weight_decay=0.01,
|
| 304 |
-
lr_scheduler_type="cosine",
|
| 305 |
-
gradient_checkpointing=True,
|
| 306 |
-
dataloader_pin_memory=False,
|
| 307 |
-
)
|
| 308 |
-
|
| 309 |
-
# === Data Collator ===
|
| 310 |
-
data_collator = DataCollatorForLanguageModeling(
|
| 311 |
-
tokenizer=tokenizer,
|
| 312 |
-
mlm=False,
|
| 313 |
-
return_tensors="pt",
|
| 314 |
-
pad_to_multiple_of=8 if torch.cuda.is_available() else None,
|
| 315 |
)
|
| 316 |
|
| 317 |
# Custom callback to track progress
|
|
@@ -322,7 +308,8 @@ def train_model_background(job_id, dataset_name, base_model_name=None):
|
|
| 322 |
|
| 323 |
def on_log(self, args, state, control, model=None, logs=None, **kwargs):
|
| 324 |
current_time = time.time()
|
| 325 |
-
|
|
|
|
| 326 |
self.progress_tracker.update_progress(
|
| 327 |
state.global_step,
|
| 328 |
state.max_steps,
|
|
@@ -330,12 +317,10 @@ def train_model_background(job_id, dataset_name, base_model_name=None):
|
|
| 330 |
)
|
| 331 |
self.last_update = current_time
|
| 332 |
|
|
|
|
| 333 |
if logs:
|
| 334 |
loss = logs.get('train_loss', logs.get('loss', 'N/A'))
|
| 335 |
-
|
| 336 |
-
if isinstance(loss, (int, float)):
|
| 337 |
-
loss = f"{loss:.4f}"
|
| 338 |
-
self.progress_tracker.message = f"Step {state.global_step}/{state.max_steps}, Loss: {loss}, LR: {lr}"
|
| 339 |
|
| 340 |
def on_train_begin(self, args, state, control, **kwargs):
|
| 341 |
self.progress_tracker.status = "training"
|
|
@@ -349,50 +334,28 @@ def train_model_background(job_id, dataset_name, base_model_name=None):
|
|
| 349 |
trainer = Trainer(
|
| 350 |
model=model,
|
| 351 |
args=training_args,
|
| 352 |
-
train_dataset=
|
| 353 |
-
data_collator=data_collator,
|
| 354 |
callbacks=[ProgressCallback(progress)],
|
| 355 |
tokenizer=tokenizer,
|
| 356 |
)
|
| 357 |
|
| 358 |
# === Train & Save ===
|
| 359 |
trainer.train()
|
| 360 |
-
|
| 361 |
-
# Save the model properly
|
| 362 |
trainer.save_model(output_dir)
|
| 363 |
tokenizer.save_pretrained(output_dir)
|
| 364 |
|
| 365 |
-
# Save
|
| 366 |
-
with open(os.path.join(output_dir, "base_model.txt"), "w") as f:
|
| 367 |
-
f.write(base_model)
|
| 368 |
-
|
| 369 |
-
training_info = {
|
| 370 |
-
"base_model": base_model,
|
| 371 |
-
"dataset_name": dataset_name,
|
| 372 |
-
"dataset_size": len(tokenized_dataset),
|
| 373 |
-
"max_length": max_length,
|
| 374 |
-
"batch_size": batch_size,
|
| 375 |
-
"learning_rate": learning_rate,
|
| 376 |
-
"num_epochs": num_epochs,
|
| 377 |
-
"total_steps": total_steps,
|
| 378 |
-
"detected_columns": progress.detected_columns
|
| 379 |
-
}
|
| 380 |
-
|
| 381 |
-
with open(os.path.join(output_dir, "training_info.json"), "w") as f:
|
| 382 |
-
import json
|
| 383 |
-
json.dump(training_info, f, indent=2)
|
| 384 |
-
|
| 385 |
-
# Update progress
|
| 386 |
progress.model_path = output_dir
|
| 387 |
progress.status = "completed"
|
| 388 |
progress.progress = 100
|
| 389 |
-
progress.message = f"Training completed
|
| 390 |
|
| 391 |
-
# Keep the temp directory for download
|
| 392 |
def cleanup_temp_dir():
|
| 393 |
-
time.sleep(
|
| 394 |
try:
|
| 395 |
shutil.rmtree(temp_dir)
|
|
|
|
| 396 |
if job_id in training_jobs:
|
| 397 |
del training_jobs[job_id]
|
| 398 |
except:
|
|
@@ -427,7 +390,6 @@ def create_model_zip(model_path, job_id):
|
|
| 427 |
|
| 428 |
memory_file.seek(0)
|
| 429 |
return memory_file
|
| 430 |
-
|
| 431 |
# ============== API ROUTES ==============
|
| 432 |
@app.route('/api/train', methods=['POST'])
|
| 433 |
def start_training():
|
|
@@ -435,9 +397,9 @@ def start_training():
|
|
| 435 |
try:
|
| 436 |
data = request.get_json() if request.is_json else {}
|
| 437 |
dataset_name = data.get('dataset_name', 'ruslanmv/ai-medical-chatbot')
|
| 438 |
-
base_model_name = data.get('base_model', 'microsoft/DialoGPT-
|
| 439 |
|
| 440 |
-
job_id = str(uuid.uuid4())[:8]
|
| 441 |
progress = TrainingProgress(job_id)
|
| 442 |
training_jobs[job_id] = progress
|
| 443 |
|
|
@@ -531,7 +493,7 @@ def home():
|
|
| 531 |
"url": "/api/train",
|
| 532 |
"body": {
|
| 533 |
"dataset_name": "your-dataset-name",
|
| 534 |
-
"base_model": "microsoft/DialoGPT-
|
| 535 |
}
|
| 536 |
}
|
| 537 |
}
|
|
@@ -542,5 +504,5 @@ def health():
|
|
| 542 |
return jsonify({"status": "healthy"})
|
| 543 |
|
| 544 |
if __name__ == '__main__':
|
| 545 |
-
port = int(os.environ.get('PORT', 7860))
|
| 546 |
app.run(host='0.0.0.0', port=port, debug=False)
|
|
|
|
| 112 |
return question_col, answer_col
|
| 113 |
|
| 114 |
def train_model_background(job_id, dataset_name, base_model_name=None):
|
| 115 |
+
"""Background training function with progress tracking"""
|
| 116 |
progress = training_jobs[job_id]
|
| 117 |
|
| 118 |
try:
|
|
|
|
| 138 |
TrainingArguments,
|
| 139 |
Trainer,
|
| 140 |
TrainerCallback,
|
|
|
|
| 141 |
)
|
| 142 |
from peft import (
|
| 143 |
LoraConfig,
|
| 144 |
get_peft_model,
|
|
|
|
| 145 |
)
|
| 146 |
|
| 147 |
# === Authentication ===
|
|
|
|
| 152 |
progress.status = "loading_model"
|
| 153 |
progress.message = "Loading base model and tokenizer..."
|
| 154 |
|
| 155 |
+
# === Configuration ===
|
| 156 |
+
base_model = base_model_name or "microsoft/DialoGPT-small"
|
| 157 |
new_model = f"trained-model-{job_id}"
|
| 158 |
+
max_length = 256
|
| 159 |
|
| 160 |
# === Load Model and Tokenizer ===
|
| 161 |
model = AutoModelForCausalLM.from_pretrained(
|
| 162 |
base_model,
|
| 163 |
cache_dir=temp_dir,
|
| 164 |
+
torch_dtype=torch.float32,
|
| 165 |
device_map="auto" if torch.cuda.is_available() else "cpu",
|
| 166 |
+
trust_remote_code=True
|
|
|
|
| 167 |
)
|
| 168 |
|
| 169 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 170 |
base_model,
|
| 171 |
cache_dir=temp_dir,
|
| 172 |
+
trust_remote_code=True
|
|
|
|
| 173 |
)
|
| 174 |
|
| 175 |
# Add padding token if not present
|
| 176 |
if tokenizer.pad_token is None:
|
| 177 |
tokenizer.pad_token = tokenizer.eos_token
|
|
|
|
| 178 |
|
| 179 |
# Resize token embeddings if needed
|
| 180 |
model.resize_token_embeddings(len(tokenizer))
|
|
|
|
| 184 |
|
| 185 |
# === LoRA Config ===
|
| 186 |
peft_config = LoraConfig(
|
| 187 |
+
r=8,
|
| 188 |
+
lora_alpha=16,
|
| 189 |
+
lora_dropout=0.1,
|
| 190 |
bias="none",
|
| 191 |
+
task_type="CAUSAL_LM",
|
|
|
|
| 192 |
)
|
| 193 |
model = get_peft_model(model, peft_config)
|
|
|
|
|
|
|
|
|
|
| 194 |
|
| 195 |
progress.status = "loading_dataset"
|
| 196 |
progress.message = "Loading and preparing dataset..."
|
|
|
|
| 212 |
progress.detected_columns = {"question": question_col, "answer": answer_col}
|
| 213 |
progress.message = f"Detected columns - Question: {question_col}, Answer: {answer_col}"
|
| 214 |
|
| 215 |
+
# Use subset for faster testing (can be made configurable)
|
| 216 |
+
dataset = dataset.shuffle(seed=65).select(range(min(1000, len(dataset))))
|
|
|
|
| 217 |
|
| 218 |
+
# Custom dataset class for proper handling
|
| 219 |
+
class CustomDataset(torch.utils.data.Dataset):
|
| 220 |
+
def __init__(self, texts, tokenizer, max_length):
|
| 221 |
+
self.texts = texts
|
| 222 |
+
self.tokenizer = tokenizer
|
| 223 |
+
self.max_length = max_length
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
|
| 225 |
+
def __len__(self):
|
| 226 |
+
return len(self.texts)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
|
| 228 |
+
def __getitem__(self, idx):
|
| 229 |
+
text = self.texts[idx]
|
| 230 |
+
|
| 231 |
+
# Tokenize the text
|
| 232 |
+
encoding = self.tokenizer(
|
| 233 |
+
text,
|
| 234 |
+
truncation=True,
|
| 235 |
+
padding='max_length',
|
| 236 |
+
max_length=self.max_length,
|
| 237 |
+
return_tensors='pt'
|
| 238 |
+
)
|
| 239 |
+
|
| 240 |
+
# Flatten the tensors (remove batch dimension)
|
| 241 |
+
input_ids = encoding['input_ids'].squeeze()
|
| 242 |
+
attention_mask = encoding['attention_mask'].squeeze()
|
| 243 |
+
|
| 244 |
+
# For causal language modeling, labels are the same as input_ids
|
| 245 |
+
labels = input_ids.clone()
|
| 246 |
+
|
| 247 |
+
# Set labels to -100 for padding tokens (they won't contribute to loss)
|
| 248 |
+
labels[attention_mask == 0] = -100
|
| 249 |
+
|
| 250 |
+
return {
|
| 251 |
+
'input_ids': input_ids,
|
| 252 |
+
'attention_mask': attention_mask,
|
| 253 |
+
'labels': labels
|
| 254 |
+
}
|
| 255 |
+
|
| 256 |
+
# Prepare texts using detected columns
|
| 257 |
+
texts = []
|
| 258 |
+
for item in dataset:
|
| 259 |
+
question = str(item[question_col]).strip()
|
| 260 |
+
answer = str(item[answer_col]).strip()
|
| 261 |
+
text = f"Question: {question}\nAnswer: {answer}{tokenizer.eos_token}"
|
| 262 |
+
texts.append(text)
|
| 263 |
+
|
| 264 |
+
# Create custom dataset
|
| 265 |
+
train_dataset = CustomDataset(texts, tokenizer, max_length)
|
| 266 |
|
| 267 |
+
# Calculate total training steps
|
| 268 |
+
batch_size = 2
|
| 269 |
+
gradient_accumulation_steps = 1
|
| 270 |
+
num_epochs = 1
|
|
|
|
| 271 |
|
| 272 |
+
steps_per_epoch = len(train_dataset) // (batch_size * gradient_accumulation_steps)
|
| 273 |
total_steps = steps_per_epoch * num_epochs
|
|
|
|
| 274 |
|
| 275 |
progress.total_steps = total_steps
|
| 276 |
progress.status = "training"
|
| 277 |
progress.message = "Starting training..."
|
| 278 |
|
| 279 |
+
# === Training Arguments ===
|
| 280 |
output_dir = os.path.join(temp_dir, new_model)
|
| 281 |
os.makedirs(output_dir, exist_ok=True)
|
| 282 |
|
|
|
|
| 285 |
per_device_train_batch_size=batch_size,
|
| 286 |
gradient_accumulation_steps=gradient_accumulation_steps,
|
| 287 |
num_train_epochs=num_epochs,
|
| 288 |
+
logging_steps=1,
|
| 289 |
+
save_steps=max(1, total_steps // 2),
|
| 290 |
+
save_total_limit=1,
|
| 291 |
+
learning_rate=5e-5,
|
| 292 |
+
warmup_steps=2,
|
|
|
|
| 293 |
logging_strategy="steps",
|
| 294 |
save_strategy="steps",
|
| 295 |
+
fp16=False,
|
| 296 |
bf16=False,
|
| 297 |
dataloader_num_workers=0,
|
| 298 |
remove_unused_columns=False,
|
| 299 |
report_to=None,
|
| 300 |
prediction_loss_only=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 301 |
)
|
| 302 |
|
| 303 |
# Custom callback to track progress
|
|
|
|
| 308 |
|
| 309 |
def on_log(self, args, state, control, model=None, logs=None, **kwargs):
|
| 310 |
current_time = time.time()
|
| 311 |
+
# Update every 3 seconds
|
| 312 |
+
if current_time - self.last_update >= 3:
|
| 313 |
self.progress_tracker.update_progress(
|
| 314 |
state.global_step,
|
| 315 |
state.max_steps,
|
|
|
|
| 317 |
)
|
| 318 |
self.last_update = current_time
|
| 319 |
|
| 320 |
+
# Log training metrics if available
|
| 321 |
if logs:
|
| 322 |
loss = logs.get('train_loss', logs.get('loss', 'N/A'))
|
| 323 |
+
self.progress_tracker.message = f"Step {state.global_step}/{state.max_steps}, Loss: {loss}"
|
|
|
|
|
|
|
|
|
|
| 324 |
|
| 325 |
def on_train_begin(self, args, state, control, **kwargs):
|
| 326 |
self.progress_tracker.status = "training"
|
|
|
|
| 334 |
trainer = Trainer(
|
| 335 |
model=model,
|
| 336 |
args=training_args,
|
| 337 |
+
train_dataset=train_dataset,
|
|
|
|
| 338 |
callbacks=[ProgressCallback(progress)],
|
| 339 |
tokenizer=tokenizer,
|
| 340 |
)
|
| 341 |
|
| 342 |
# === Train & Save ===
|
| 343 |
trainer.train()
|
|
|
|
|
|
|
| 344 |
trainer.save_model(output_dir)
|
| 345 |
tokenizer.save_pretrained(output_dir)
|
| 346 |
|
| 347 |
+
# Save model info
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 348 |
progress.model_path = output_dir
|
| 349 |
progress.status = "completed"
|
| 350 |
progress.progress = 100
|
| 351 |
+
progress.message = f"Training completed! Model ready for download."
|
| 352 |
|
| 353 |
+
# Keep the temp directory for download (cleanup after 1 hour)
|
| 354 |
def cleanup_temp_dir():
|
| 355 |
+
time.sleep(3600) # Wait 1 hour before cleanup
|
| 356 |
try:
|
| 357 |
shutil.rmtree(temp_dir)
|
| 358 |
+
# Remove from training_jobs after cleanup
|
| 359 |
if job_id in training_jobs:
|
| 360 |
del training_jobs[job_id]
|
| 361 |
except:
|
|
|
|
| 390 |
|
| 391 |
memory_file.seek(0)
|
| 392 |
return memory_file
|
|
|
|
| 393 |
# ============== API ROUTES ==============
|
| 394 |
@app.route('/api/train', methods=['POST'])
|
| 395 |
def start_training():
|
|
|
|
| 397 |
try:
|
| 398 |
data = request.get_json() if request.is_json else {}
|
| 399 |
dataset_name = data.get('dataset_name', 'ruslanmv/ai-medical-chatbot')
|
| 400 |
+
base_model_name = data.get('base_model', 'microsoft/DialoGPT-small')
|
| 401 |
|
| 402 |
+
job_id = str(uuid.uuid4())[:8] # Short UUID
|
| 403 |
progress = TrainingProgress(job_id)
|
| 404 |
training_jobs[job_id] = progress
|
| 405 |
|
|
|
|
| 493 |
"url": "/api/train",
|
| 494 |
"body": {
|
| 495 |
"dataset_name": "your-dataset-name",
|
| 496 |
+
"base_model": "microsoft/DialoGPT-small"
|
| 497 |
}
|
| 498 |
}
|
| 499 |
}
|
|
|
|
| 504 |
return jsonify({"status": "healthy"})
|
| 505 |
|
| 506 |
if __name__ == '__main__':
|
| 507 |
+
port = int(os.environ.get('PORT', 7860)) # HF Spaces uses port 7860
|
| 508 |
app.run(host='0.0.0.0', port=port, debug=False)
|