--- license: apache-2.0 datasets: - allenai/MADLAD-400 language: - ig base_model: - allenai/OLMo-2-1124-7B-Instruct --- # OLMo 2 1124 7B Instruct for Igbo: LoTA (37.5% sparsity) This model is built on top of OLMo 2 1124 7B Instruct adapted for Igbo using 200M target language tokens sampled from MADLAD-400. The model is adapted using the LoTA approach with 37.5% sparsity. ## Model Description - **Language:** Igbo - **License:** Apache 2.0 - **Fine-tuned from model:** [allenai/OLMo-2-1124-7B-Instruct](https://huggingface.co/allenai/OLMo-2-1124-7B-Instruct) ## Model Sources - **Repository:** https://github.com/gucci-j/ssu - **Paper:** https://arxiv.org/abs/2512.04844 ## How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import AutoTokenizer, AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained( "ssu-project/OLMo-2-1124-7B-Instruct-ig-lota_0.375" ) tokenizer = AutoTokenizer.from_pretrained( "ssu-project/OLMo-2-1124-7B-Instruct-ig-lota_0.375" ) ``` ## Citation ``` @misc{yamaguchi2025mitigatingcatastrophicforgettingtarget, title={Mitigating Catastrophic Forgetting in Target Language Adaptation of LLMs via Source-Shielded Updates}, author={Atsuki Yamaguchi and Terufumi Morishita and Aline Villavicencio and Nikolaos Aletras}, year={2025}, eprint={2512.04844}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2512.04844}, } ```